Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T17:30:15.020Z Has data issue: false hasContentIssue false

Thermochemical Comparison of the Systems Re-O and Tc-O

Published online by Cambridge University Press:  26 February 2011

H. Migge*
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker-Strasse 100, D-1000 Berlin 39, Federal Republik of, Germany
Get access

Extract

Technetium is a hazardous fission product with a long half-life. In vitrification of nuclear waste, technetium tends to be lost substantially by evaporation [1], and the formation of gaseous Tc oxides is assumed to be the reason. Reliable thermochemical treatment of the problem is difficult, since data on the Tc-O system are surprisingly scarce [2]. Therefore, the system Re-O is treated for comparison. Key thermodynamic data for the condensed rhenium oxides exist [3,4,5] as well as measurements on the sublimation and the evaporation of the oxides [6–11]. Consistency of the different data is investigated by assessing the sublimation data of solid Re2O7, using them to calculate other sublimation equilibria and to compare the results with published measurements. Then a predominance area diagram is constructed and discussed with respect to the pressures of the gaseous oxides and their dependence on the temperature, oxygen partial pressure, and condensed oxide phase present. Predominance area diagrams of the Tc-O system are calculated and critically discussed. Owing to the small amout of available data, the possible existence of solid TcO3 is discussed. Comparison with the system Re-O is used to clarify, where further investigations need to be done.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jouan, A., Moncouyoux, J.P., Halaszovich, S., EUR 10650, 1986,Google Scholar
2. Rard, J.A., UCRL - 53440, 1983.Google Scholar
3. King, E.G., Richardson, D.W. and Mrázek, R.V., BM-RJ-7323, 1969.Google Scholar
4. Stuve, J.M. and Ferrante, M.J., BM-8199, 1976.Google Scholar
5. Pankratz, L.B., BM-672, 1982.Google Scholar
6. Battles, J.E., Gunderson, G.E., Edwards, R.K., J. Phys. Chem. 72, 3963(1968).CrossRefGoogle Scholar
7. Skinner, H.B. and Searcy, A.W., J. Phys. Chem. 77, 1578 (1973).CrossRefGoogle Scholar
8. Smith, W.T., Line, L.E., and Bell, W.A., J. Am. Chem. Soc. 74, 4964 (1952).CrossRefGoogle Scholar
9. Glemser, O., Müller, A. und Stöcker, U., Z. anorg. alig. Chem 333, 26 (1964).Google Scholar
10. Martens, H. und Ziegenbalg, S., Z. anorg. alig. Chem. 401, 145 (1973).CrossRefGoogle Scholar
11. Oppermann, H., Z. anorg. allg. Chem. 523, 135 (1985).CrossRefGoogle Scholar
12. Franco, J.I. und Kleykamp, H., Berichte Bunsen-Ges. 75, 934 (1971).CrossRefGoogle Scholar
13. Busey, R.H., J. Am. Chem. Soc. 78, 3263 (1956).CrossRefGoogle Scholar
14. Rezukhina, T.N. and Gorshkova, T.J., Zhurnal Fiz. Khimii, 54, 2688 (1980) [Russ. J. Phys. Chem., 54, 1537 (1980)]Google Scholar
15. Schick, H.L., Thermodynamics of Certain Refractory Compounds, Vol. II, Academic Press, New York and London, 1966.Google Scholar
16. Studier, M., J. Phys. Chem. 66, 189 (1962)CrossRefGoogle Scholar
17. Semenov, G.A. and Ovchiunikov, K.V., Zhr. Obsch. Khim. 35, 1517 (1965) [J. General Chem. USSR, 35, 1521 (1965)].Google Scholar
18. Franklin, J.E. and Stickney, R.E., High Temp. Sci. 3, 401 (1971).Google Scholar
19. Lindemer, T.B., Besmann, Th. M., Johnson, C.E., J. Nucl. Mat. 100, 178(1981).CrossRefGoogle Scholar
20. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979), p. 191.Google Scholar
21. JANAF Thermochemical Tables 3rd ed. in: J. Phys. and Chem. Ref. Data 14 (1985) Suppl. 1.Google Scholar
22. Barin, J., Knacke, O. and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1976).Google Scholar
23. Schab, D., Freiberger Forschungshefte, B 158, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1971.Google Scholar
24. Cobble, J.W., Smith, W. T., Boyd, G.E., J. Am. Chem. Soc. 75, 5777 (1953).CrossRefGoogle Scholar
25. Gayer, K.H., Herrell, A. Y. and Busey, R.H., J. Chem. Therm. 8, 959 (1976).CrossRefGoogle Scholar
26. Smith, W.T., Cobble, J.W., Boyd, G.E., J. Amer. Chem. Soc. 75, 5773 (1953).CrossRefGoogle Scholar
27. Boyd, G.E., Cobble, J.W., Nelson, C.M. and Smith, W.T., J. Am. Chem. Soc. 74, 556(1952).CrossRefGoogle Scholar
28. Kugler, H.K. and Keller, C. (editors), Gmelin Handbook of Inorganic Chemistry, 8th ed., Technetium, Suppl. Vol. 2, Springer Verlag, 1983 Google Scholar
29. The NEA Thermochemical Data Base Project (NEA-TDB), OECD Nuclear Energy Agency, Data Bank, F - 91191 Gif-sur-Yvette, FranceGoogle Scholar
30. Boyd, G.E., J. Chem. Education, 36, 3 (1959)CrossRefGoogle Scholar
31. Wagman, D.D. et al., The NBS tables in J. Phys. Chem. Ref. Data, 11 (1982), Suppl. 2, p. 196 Google Scholar
32. Müller, O., White, W.B. and Roy, R., J. Inorg. Nucl. Chem., 26, 2075 (1964)CrossRefGoogle Scholar
33. Kleykamp, H., KfK-Nachr. Jahrgang 12 4 (1980), p. 37 Google Scholar
34. Brewer, L., Rosenblatt, G.M., Chem. Rev. 61, 257 (1961)CrossRefGoogle Scholar
35. Nelson, C.M., Boyd, G.E., Smith, W.T. J. Am. Chem. Soc. 76, 348 (1954)CrossRefGoogle Scholar
36. Schwochau, K., Radiochimica Acta, 32, 139 (1983)CrossRefGoogle Scholar
37. Farber, M. et al., Combustion and Flames, 22, 191 (1974)CrossRefGoogle Scholar
38. Budon, V.D. and Tseft, A.L., Izvest. Akad. Nauk Kazakh, SSR, Ser. Met. Obogashch. i Ogneuporov 3, 49 (1958); Chem. Abstr., 54, 20392e (1960)Google Scholar
39. Deev, V.I. and Smirnow, V.I., Proc. Acad. Sci. USSR, Chem. Sect, (in English), 140, 961(1961)Google Scholar
40. Nechemkin, H., Kurtz, A.N. and Hiskey, C.F., J. Am. Chem. Soc. 73, 2829 (1951)Google Scholar
41. Freude, E., Lutze, W., Rüssel, C. and Schaeffer, H.A., this conferenceGoogle Scholar
42. Lammertz, H., Merz, E., Halaszovich, St., Scientific Basis for Nnrlear Waste Management VTTT. MRS, Pittsburg, PA, 1985, p. 823829 Google Scholar
43. Bibler, N.E., Jurgensen, A.R., Scientific Basis for Nuclear Waste Management XI, MRS, Pittsburg, PA, 1987, p. 585593 Google Scholar
44. Bradley, D.J., Harvey, C.O., Turcotte, R.P., PNL-3152, 1979.Google Scholar