Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T17:17:56.714Z Has data issue: false hasContentIssue false

Thermoelectric Properties of the AIPdMn Quasicrystalline System

Published online by Cambridge University Press:  10 February 2011

A. L. Pope
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 USA
T. M. Tritt
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 USA Materials Science and Engineering Department, Clemson University, Clemson, SC
M. Chernikov
Affiliation:
Institut fuer Mikrostrukturforschung, Forschungszentrum Juelich GMBH, D-52425 Juelich, Germany
M. feuerbacher
Affiliation:
Institut fuer Mikrostrukturforschung, Forschungszentrum Juelich GMBH, D-52425 Juelich, Germany
S. Legault
Affiliation:
McGill University
R. Gagnon
Affiliation:
McGill University
J. Strom-Olsen
Affiliation:
McGill University
Get access

Abstract

We have begun a systematic investigation the electrical transport properties of the AlPdMn quasicrystalline system. Resistivity and thermopower measurements have been performed over a temperature range between 5K and 320K. In the pure, single phase Al70Pd20Mn10 we have observed thermopowers as high as +80 μV/K around room temperature with resistivities of 1.5 mΩ-cm. Thermal conductivity measurements have been performed yielding values less than 2 W/m-K for all the samples investigated to date. We will discuss how the thermopower and resistivity vary as a result of differing sample composition as well as different processing and annealing conditions. Several different preparation techniques have been employed to further understand how various factors affect the thermal and electrical properties of this quasicrystalline system and how these may be adjusted to optimize these materials for possible thermoelectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Slack, G. A., in CRC Handbook of Thermoelectrics, Rowe ed (1995), ref.2,p 407 Google Scholar
2 Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W.: Phys. Rev. Lett. 53 (1984) 1951.CrossRefGoogle Scholar
3 Janot, C., Quasicrystals, Claredon Press, Oxford (1994).Google ScholarPubMed
4 Perrot, A., Duboise, J.M., Cassart, M. and Issi, J.P., Proceesings of the 5th International Conference on Quasicrystals, World Scientific, (1995) 588.Google Scholar
5 Poon, S. J., Adv. Phys. 41 (1992) 303.CrossRefGoogle Scholar
6 Mayou, D., Berger, C., Cyrot-Lackmann, F., Klein, T., and Lanco, P. Phys. Rev. Lett. 25 (1993) 3915.CrossRefGoogle Scholar
7 Bancel, P. A., Quasicrystals: The State of Art World Scientific, Singapore (1991)Google Scholar
8 Chernikov, M. A., Bianchi, A., Ott, H. R., Phys. Rev. B 51 (1995) 153.CrossRefGoogle Scholar
9 Tritt, T. M., Pope, A. L., Chernikov, M., Feuerbacher, M., Legault, S., Gagnon, R., Strom-Olsen, J., Quasicrystals, 1998 MRS proceedingsGoogle Scholar
10 Tritt, T. M., A.L. Pope in progressGoogle Scholar
11 Wilson, M. L., Legault, S., Stroud, R. M. and Tritt, T. M., Thermoelectric Materials, New Directions and Appraoches, MRS Volume 478, edited by Tritt, T. M., Kanatzidis, M., Lyon, H. B. Mahan, G., p321(1997)Google Scholar
12 Tritt, Terry M., Wilson, M. L., Johnson, A. L. (Pope), Legault, S. and Stroud, R. M. Proceedings of ICT-16, IEEE Press, p455 (1997)Google Scholar
13 Private Communication: Joe Poon, University of VirginiaGoogle Scholar
14 LeGault, S., Ellman, B., Strom-Olsen, J.O., Taillefer, L., Kycia, S., Lograsso, T., Delaney, D., New Horizons in Quasicrystals, World Scientific Press, p 224, edited by Goldman, A. I. (1997).Google Scholar