Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T20:37:46.327Z Has data issue: false hasContentIssue false

Thermo-Mechanical behavior at Nano-Scale and Size Effects in Shape Memory Alloys

Published online by Cambridge University Press:  22 March 2011

Jose San Juan
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Maria L. Nó
Affiliation:
Dept. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
Christopher A. Schuh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Get access

Abstract

Shape Memory Alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, exhibiting specific properties of superelasticity and shape memory. At present there is a high scientific and technological interest to develop these properties at small scale, to apply SMA as sensors and actuators in MEMS technologies. In order to study the thermo-mechanical properties of SMA at micro and nano scale, instrumented nano indentation is being widely used for nano compression tests. By using this technique, superelasticity and shape memory at the nano-scale has been demonstrated in micro and nano pillars of Cu-Al-Ni SMA. However the martensitic transformation seems to exhibit a different behavior at small scale than in bulk materials and a size effect on superelasticity has been recently reported. In the present work we will overview the thermo-mechanical properties of Cu-Al-Ni SMA at the nano-scale, with special emphasis on size effects. Finally, the above commented size effects will be discussed on the light of the microscopic mechanisms controlling the martensitic transformation at nano scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, C., Fundations of MEMS (Pearson Prentice Hall, Upper Saddle River NJ, 2006)Google Scholar
2. Worden, K., Bullongh, W.A., and Hayvood, J. (Eds.), Smart Technologies (World Scientific, New Jersey, 2003)Google Scholar
3. Kohl, M., Shape Memory Microactuators. (Springer-Verlag, Berlin, 2004)Google Scholar
4. Bhattacharya, K. and James, R.D., Science 307, 53 (2005)Google Scholar
5. Humbeeck, J. V., Adv. Eng. Mat. 3, 837 (2001)Google Scholar
6. Otsuka, K. and Wayman, C.M. (Eds.) Shape Memory Materials. (Cambridge Univ. Press, Cambridge, 1998)Google Scholar
7. Romig, A.D., Dugger, M.T. and McWhorther, P.J., Acta Mater. 51, 5837 (2003)Google Scholar
8. Karoub, J., Smalltimes 4, 23 (2004)Google Scholar
9. Tanner, D.M., et al. . Microelectronics Reliability 47, 1806 (2007)Google Scholar
10. San Juan, J. and , M.L., J. Alloys & Comp. 335, 65 (2003)Google Scholar
11. Waitz, T., Kazykhanov, V. and Karnthaler, H.P., Acta Mater. 52, 137 (2004)Google Scholar
12. Fu, Y.Q., Zhang, S., Wu, M.J., Huang, W.M., Du, H.J., Luo, J.K., Flewitt, A.J. and Milne, W.I., Thin Solid Films 515, 80 (2006)Google Scholar
13. Waitz, T., Tsuchiya, K., Antretter, T. and Fischer, F.D., MRS Bulletin 34, 814 (2009)Google Scholar
14. Ibarra, A., Caillard, D., San Juan, J. and , M.L., Appl. Phys. Lett. 90, 101907–1 (2007)Google Scholar
15. , M.L., Ibarra, A., Caillard, D. and San Juan, J., J. of Phys.: Conf. Ser. 240, 012002 (2010)Google Scholar
16. , M.L., Ibarra, A., Caillard, D. and San Juan, J., Acta Mater. 58, 6181 (2010)Google Scholar
17. Miyazaki, S., Fu, Y.K. and Huang, W.M. (Eds.) Thin Film Shape Memory Alloys. (Cambridge University Press, Cambridge, 2009)Google Scholar
18. Fischer-Cripps, A.C., Nanoindentation. (Springer, New York, 2004)Google Scholar
19. Schuh, C.A., Materials Today 9, 32 (2006)Google Scholar
20. Ni, W., Cheng, Y.T. and Grummon, D.S., Appl. Phys. Lett. 82, 2811 (2003)Google Scholar
21. Ma, X.G. and Komvopoulos, K., Appl. Phys. Lett. 83, 3773 (2003)Google Scholar
22. Shaw, G.A., Stone, D.D., Johnson, A.D., Ellis, A.B. and Crone, W.C., Appl. Phys. Lett. 83, 257 (2003)Google Scholar
23. Ma, X.G. and Komvopoulos, K., Appl. Phys. Lett. 84, 4274 (2004)Google Scholar
24. Komvopoulos, K. and Ma, X.G., Appl. Phys. Lett. 87, 263108 (2005)Google Scholar
25. Shaw, G.A., Trethewey, J.S., Johnson, A.D., Drugan, W.J. and Crone, W.C., Adv. Mater. 17, 1123 (2005)Google Scholar
26. Liu, C., Zhao, Y., Sun, Q., Yu, T. and Cao, Z., J. Mater. Sci. 40, 1501 (2005)Google Scholar
27. Rajagopalan, S., Little, A.L., Bourke, M.A.M. and Vaidyanathan, R., Appl. Phys. Lett. 86, 081901 (2005)Google Scholar
28. Frick, C.P., Lang, T.W., Spark, K. and Gall, K., Acta Mater. 54, 2223 (2006)Google Scholar
29. Muir Wood, A.J. and Clyne, T.W., Acta Mater. 54, 5607 (2006)Google Scholar
30. Zhang, H.S. and Komvopoulos, K., J. Mater. Sci. 41, 5021 (2006)Google Scholar
31. Zhang, Y., Cheng, Y.T. and Grummon, D.S., Appl. Phys. Lett. 89, 041912 (2006)Google Scholar
32. Crone, W.C., Brock, H. and Creuziger, A., Exp. Mechanics 47, 133 (2007)Google Scholar
33. Muir Wood, A.J., Sanjabi, S., Fu, Y.Q., Barber, Z.H. and Clyne, T.W., Surf. Coat. Tech. 202, 3115 (2008)Google Scholar
34. Cole, D.P., Bruck, H.A. and Roytburd, A.L., J.Appl. Phys. 103, 064315 (2008)Google Scholar
35. Zheng, H., Rao, J., Pfetzing, J., Frenzel, J., Somsen, C. and Eggeler, G., Scripta Mater. 58, 743 (2008)Google Scholar
36. Dwivedi, A., Wyrobek, T., Warren, O.L., Hattrick-Simpers, J., Famodu, O.O. and Takeuchi, I., J. Appl. Phys. 104, 073501 (2008)Google Scholar
37. Cole, D.P., Jin, H., Lu, W.Y., Roytburd, A.L. and Bruck, H.A., Appl. Phys. Lett. 94, 193114 (2009)Google Scholar
38. Pfetzing-Micklich, J., Wagner, M.F.X., Zarnetta, R., Frenzel, J. , Eggeler, G., Markaki, A.E., Wheeler, J. and Clyne, T.W., Adv. Eng. Mater. 12, 13 (2010)Google Scholar
39. Huang, X., San Juan, J. and Ramirez, A.G., Scripta Mater. 63, 16 (2010)Google Scholar
40. Uchic, M.D., Dimiduk, D.M., Florando, J.N. and Nix, W.D., Science 305, 986 (2004)Google Scholar
41. Greer, J.R., Oliver, W.C. and Nix, W.D., Acta Mater. 53, 1821 (2005)Google Scholar
42. Frick, C.P., Orso, S. and Arzt, E., Acta Mater. 55, 3845 (2007)Google Scholar
43. San Juan, J., , M.L. and Schuh, C.A., Adv. Mater. 20, 272 (2008)Google Scholar
44. Frick, C.P., Clark, B.G., Orso, S., Ribic, P.S. and Arzt, E., Scripta Mater. 59, 7 (2008)Google Scholar
45. Norfleet, D.M., Sarosi, P.M., Manchiraju, S., Wagner, M.F.X., Uchic, M.D., Anderson, P.M. and Mills, M.J., Acta Mater. 57, 3549 (2009)Google Scholar
46. San Juan, J., , M.L. and Schuh, C.A., Nature Nanotechnology 4, 415 (2009)Google Scholar
47. Ye, J., Mishra, R.K., Pelton, A.R. and Minor, A.M., Acta Mater. 58, 490 (2010)Google Scholar
48. Recarte, V., Perez-Saez, R.B., Bocanegra, E.H., , M.L. and San Juan, J., Mat.Sci. Eng. A 273-275, 380 (1999)Google Scholar
49. Recarte, V., Perez-Saez, R.B., Bocanegra, E.H., , M.L. and San Juan, J., Metall. Mat.Trans. A 33, 2581 (2002)Google Scholar
50. Horikawa, H., Ichinoise, S., Morii, K., Miyazaki, S. and Otsuka, K., Metall. Trans. A 19, 915 (1988)Google Scholar
51. Zhang, H., Schuster, B.E., Wei, Q. and Ramesh, K.T., Scripta Mater. 54, 181 (2006)Google Scholar
52. Schuh, C.A., Mason, J.K., Lund, A.C., Nature Mater. 4, 617 (2005)Google Scholar
53. Rodriguez-Aseguinolaza, J., Ruiz-Larrea, I., , M.L., Lopez-Echarri, A. and San Juan, J., Acta Mater. 56, 6283 (2008)Google Scholar
54. Aseguinolaza, J. Rodriguez-, Larrea, I. Ruiz-, , M.L., Lopez-Echarri, A. and San Juan, J., J. Appl. Phys. 107, 083518(2010)Google Scholar
55. San Juan, J., , M.L. and Schuh, C.A.. To be published.Google Scholar
56. Ishida, A. and Sato, M., Acta Mater. 51, 5571 (2003)Google Scholar
57. Carter, C.B. and Norton, M.G., Ceramic Materials Science and Engineering. (Springer, New York, 2007)Google Scholar