Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T03:40:48.679Z Has data issue: false hasContentIssue false

Thin Film a-Si/poly-Si Multibandgap Tandem Solar Cells With Both Absorber Layers Deposited by Hot Wire Cvd

Published online by Cambridge University Press:  17 March 2011

R.E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
C.H.M. Van Der Werf
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
M.K. Van Veen
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
P.A.T.T. Van Veenendaal
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
R. Jimenez Zambrano
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
Z. Hartman
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
J. Löffler
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
J.K. Rath
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

The first competitive a-Si/poly-Si multibandgap tandem cells have been made in which the two intrinsic absorber layers are deposited by Hot Wire Chemical Vapor Deposition (HWCVD). These cells consist of two stacked n-i-p type solar cells on a plain stainless steel substrate using plasma deposited n- and p-type doped layers and Hot-Wire deposited intrinsic (i) layers, where the i-layer is either amorphous (band gap 1.8 eV) or polycrystalline (band gap 1.1 eV). In this tandem configuration, all doped layers are microcrystalline and the two intrinsic layers are made by decomposing mixtures of silane and hydrogen at hot filaments in the vicinity of the substrate. For the two layers we used individually optimized parameters, such as gas pressure, hydrogen dilution ratio, substrate temperature, filament temperature, and filament material. The solar cells do not comprise an enhanced back reflector, but feature a natural mechanism for light trapping, due to the texture of the (220) oriented poly-Si absorber layer and the fact that all subsequent layers are deposited conformally. The deposition rate for the throughput limiting step, the poly-Si i-layer, is ≍ 5-6 Å/s. This layer also determines the highest substrate temperature required during the preparation of these tandem cells (500 °C). The initial efficiency obtained for these tandem cells is 8.1 %. The total thickness of the silicon nip/nip structure is only 1.1 µm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Meier, J., Dubail, S., Flückiger, R., Fischer, D., Keppner, H., Shah, A., Proceedings of the 1st WCPEC, 1994, p409.Google Scholar
[2] Meier, J., E. Vallat-Sauvain, Kroll, U., Dubail, S., Golay, S., Feitknecht, L., Torres, P., Fay, S., Fischer, D., Shah, A., Solar Energy Materials & Solar Cells 66 (2001) 73.Google Scholar
[3] Finger, F. et al. , Materials Research Society Symp. Proc. 452 (1997) 725.Google Scholar
[4] Rech, B., Roschek, T., Müller, J., Wieder, S., Wagner, H., Solar Energy Materials & Solar Cells 66 (2001) 267.Google Scholar
[5] Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A., J. Non-Cryst. Solids 266–269 (2000) 1082.Google Scholar
[6] Schropp, R.E.I. and Zeman, M., Amorphous and Microcrystalline Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic Publishers, ISBN 0-7923-8317-6 (Boston/Dordrecht/London, 1998).Google Scholar
[7] Nelson, B., Iwaniczko, E., Mahan, A.H., Wang, Q., Xu, Y., Crandall, R.S., Branz, H.M., Extended Abstract of the 1st International Conference on Cat-CVD (Hot-Wire CVD) Process, 2000, p291.Google Scholar
[8] Rath, J.K., Tichelaar, F.D., Meiling, H. and Schropp, R.E.I., Materials Research Society Symp. Proc. 507 (1998) 879.Google Scholar
[9] Ledermann, A., Weber, U., Mukherjee, C., and Schroeder, B., Extended Abstract of the 1st International Conference on Cat-CVD (Hot-Wire CVD) Process, 2000, p51.Google Scholar
[10] Ishibashi, K., Extended Abstract of the 1st International Conference on Cat-CVD (Hot-Wire CVD) Process, 2000, p45.Google Scholar
[11] Schropp, R.E.I. and Rath, J.K., IEEE Trans. Electron Dev. 46 (1999) 2069.Google Scholar
[12] Veen, M.K. van and Schropp, R.E.I., to be published.Google Scholar
[13] Veen, M.K. van and Schropp, R.E.I., this symposium.Google Scholar
[14] Kroll, U., Meier, J., Torres, P., Pohl, J., and Shah, A., J. Non-Cryst. Solids 227–230 (1998) 68.10.1016/S0022-3093(98)00329-9Google Scholar
[15] Rath, J.K., Meiling, H. and Schropp, R.E.I., Jpn. J. Appl. Phys. 36 (1997) 5436.Google Scholar
[16] Yamamoto, K., Yoshimi, M., Suzuki, T., Tawada, Y., Okamoto, Y., Nakjima, A., Materials Research Society Proceedings Series 507 (1998) 131.Google Scholar
[17] Rath, J.K., Rubinelli, F.A., and Schropp, R.E.I., J. Non-Cryst. Solids 227–230 (1998) 1202.Google Scholar
[18] Rubinelli, F.A., Rath, J.K., and Schropp, R.E.I., J. Appl. Phys. 89 (2001) 4010.Google Scholar