Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-20T00:38:29.739Z Has data issue: false hasContentIssue false

Three-Dimensional Simulations of Phase Separation in Model Binary Alloy Systems with Elasticity

Published online by Cambridge University Press:  10 February 2011

D. Orlikowski
Affiliation:
Department of Physics, North Carolina State University, Raleigh NC 27695.
C. Sagui
Affiliation:
Department of Physics, McGill University, Montreal PQ, Canada H3A 2T8.
A. S. Somoza
Affiliation:
Departmento de Fisica, Universidad de Murcia, Murcia, Spain.
C. Roland
Affiliation:
Department of Physics, North Carolina State University, Raleigh NC 27695.
Get access

Abstract

We report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any “reverse coarsening” of the domains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example: Gunton, J. D., San Miguel, M. and Sahni, P., in Phase Transitions and Critical Phenomena 8, edited by Domb, C. and Lebowitz, J. L. (Academic Press, NY 1983).Google Scholar
2. Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 47, 435 (1977).Google Scholar
3. Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
4. Khatcheturyan, A. G., Theory of Structural Transformations in Solids (John Wiley, 1983).Google Scholar
5. Sequeira, A. D., Calderon, H. A. and Kastorz, G., Scr. Metall. et Mat. 30, 7 (1994).Google Scholar
6. Maheshwari, A. and Ardell, A. J., Phys. Rev. Lett. 70, 2305 (1993); J. Winnel and A.J. Ardell, J. Alloys and Comp. 205 215 (1994).Google Scholar
7. Tersoff, J. and Tromp, R., Phys. Rev. Lett. 70, 2783 (1993).Google Scholar
8. For a discussion, see: Su, C. H. and Voorhees, P. W., Acta Mater. 44, 1987 (1996).Google Scholar
9. Thompson, M. E., Su, C. H. and Voorhees, P. W., Acta Mater. 42, 2107 (1994); C.H. Su and P.W. Voorhees, ibid 44 2001 (1996).Google Scholar
10. Sagui, C., Somoza, A. S. and Desai, R. C., Phys. Rev. E 50, 4865 (1994).Google Scholar
11. Laberge, C. A., Fratzl, P. and Lebowitz, J. L., Phys. Rev. Lett. 75, 4448 (1995).Google Scholar
12. Onuki, A., J. Phys. Soc. Jpn 58, 3065 (1989); ibid 58, 3069 (1989); H. Nishimori and A. Onuki, Phys. Rev. B 42, 980 (1990); A. Onuki and H. Nishimori, J. Phys. Soc. Jpn 60, 1 (1990); Phys. Rev. B 43, 13649 (1991); J. Phys. Soc. Jpn 60, 12098 (1991).Google Scholar
13. Ardell, A. J., Nicholson, R. B. and Eshelby, J. D., Acta Metall. 14, 1295 (1966).Google Scholar
14. Sagui, C., Orlikowski, D., Somoza, A. S. and Roland, C., unpublished.Google Scholar