Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T13:47:17.108Z Has data issue: false hasContentIssue false

Threshold Fracture of Networks

Published online by Cambridge University Press:  25 February 2011

K. A. Mazich
Affiliation:
Ford Motor Co., PO Box 2053 Drop 3198, Dearborn, MI 48121
C. A. Smith
Affiliation:
Ford Motor Co., PO Box 2053 Drop 3198, Dearborn, MI 48121
Get access

Abstract

We discuss the threshold fracture energy, GO, of networks over a wide range of cross-link density. C, for networks with an average number of main chain steps, ςc, that compare favorably with the entanglement spacing, ςc, follow the 1/2 power law, Go - ς1/2. Two views of molecular fracture, one a chain-breaking mechanism and the other a suction process, produce the 1/2 power law. For lightly cross-linked networks (ςc ≫ ςe), Go appears to decrease with increasing ςc. Trapped entanglements limit the extensibility and fracture energy of these networks. Consideration of rupture of trapped entangled chains gives Goc-1/2; this form agrees reasonably well with data at high ςc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, T. L., J. Polym. Sci., 32, 99 (1958).Google Scholar
2. Plazek, D. J., Choy, I., Kelley, F. N., Meerwall, E. von and Su, L., Rubber Chem. Tech., 56, 866 (1983).CrossRefGoogle Scholar
3. Rivlin, R. S. and Thomas, A. G., J. Polym. Sci., 10, 291 (1971).Google Scholar
4. Griffith, A. A., Phil. Trans., A221, 163,(1920).Google Scholar
5. Williams, J. G., Fracture Mechanics of Polymers, (Ellis Horwood Ltd., Chichester, England, 1984).Google Scholar
6. Barber, M., Donley, J. and Langer, J. S., Phys. Rev. A, 40, 366 (1989).Google Scholar
7. Gennes, P. G. de, J. Phys. France, 50, 2551 (1989); Can. J. Phys., 68, 1049 (1990).Google Scholar
8. Evans, K. E., J. Polym. Sci., Polym. Phys. Ed., 25, 353 (1987).Google Scholar
9. Prentice, P., Polymer, 24, 344 (1983); J. Mat. Sci., 20, 1445 (1985).Google Scholar
10. Lake, G. J. and Thomas, A. G., Proc. R. Soc. London, A300, 108 (1967).Google Scholar
11. Ahagon, A. and Gent, A. N., J. Polym. Sci., Polym. Phys. Ed., 13, 1903 (1975).CrossRefGoogle Scholar
12. Gent, A. N. and Tobias, R. H., J. Polym. Sci., Polym. Phys. Ed., 22,1483 (1984); Am. Chem. Soc. Symp. Ser., 193, 367 (1982).Google Scholar
13. Yanyo, L. C. and Kelley, F. N., Rubber Chem. Tech., 60, 78 (1987).Google Scholar
14. Pearson, D. S. and Graessley, W. W., Macromolecules, 13, 1001 (1980); Macromolecules, 11, 528 (1978).Google Scholar
15. Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed., (John Wiley and Sons, Inc., New York, 1980).Google Scholar
16. Mazich, K. A. and Samus, M. A., Macromolecules, 23, 2478 (1990).Google Scholar
17. Flory, P. J., Principles of Polymer Chemistry, (Cornell University Press, Ithaca, New York, 1953).Google Scholar
18. Mazich, K. A., Samus, M. A., Smith, C. A. and Rossi, C., Macromolecules, 24, 2766 (1991).Google Scholar
19. Mikos, A. G. and Peppas, N. A., J. Chem. Phys., 88, 1337 (1988).CrossRefGoogle Scholar