Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-17T20:07:04.444Z Has data issue: false hasContentIssue false

Threshold voltage drift in phase change memories: scaling and modeling

Published online by Cambridge University Press:  30 July 2012

N. Ciocchini
Affiliation:
DEI, Politecnico di Milano and IU.NET, 20133 Milano, Italy, Tel. +39 02 2399 4007, Email: ielmini@elet.polimi.it
M. Cassinerio
Affiliation:
DEI, Politecnico di Milano and IU.NET, 20133 Milano, Italy, Tel. +39 02 2399 4007, Email: ielmini@elet.polimi.it
D. Fugazza
Affiliation:
DEI, Politecnico di Milano and IU.NET, 20133 Milano, Italy, Tel. +39 02 2399 4007, Email: ielmini@elet.polimi.it
D. Ielmini
Affiliation:
DEI, Politecnico di Milano and IU.NET, 20133 Milano, Italy, Tel. +39 02 2399 4007, Email: ielmini@elet.polimi.it
Get access

Abstract

The phase-change-memory (PCM) relies on the ability of a chalcogenide material, usually Ge2Sb2Te5 (GST), to switch from the amorphous phase with a high electrical resistance (~MΩ) to a crystalline phase with a low electrical resistance (∼kΩ). The structural stability of the amorphous phase is critically affected by temperature-activated crystallization and resistance drift due to structural relaxation (SR) [1]. While amorphous chalcogenides are relatively stable with respect to crystallization, thanks to a high activation energy above 2 eV [2], the lower activation energy of SR can strongly affect the PCM electrical properties of the amorphous phase, including resistance, activation energy for conduction and, most importantly, the threshold voltage VT. The latter marks the boundary between read and programming operations in PCM, thus VT instability must be carefully predicted to minimize read disturbs within the array. To this purpose, understanding the switching mechanisms and modeling of VT is of utmost importance for PCM device development and scaling.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pirovano, A., et al. ., IEEE Trans. Electron Devices 51, 714 (2004).Google Scholar
[2] Ielmini, D. and Boniardi, M., Appl. Phys. Lett. 94, 091906 (2009).Google Scholar
[3] Ielmini, D., Phys. Rev. B 78, 035308 (2008).Google Scholar
[4] Fugazza, D., et al. ., IEDM Tech. Dig. 652655 (2010).Google Scholar
[5] Pellizzer, F., et al. ., Symp. VLSI Tech. Dig. 122 (2006).Google Scholar
[6] Ielmini, D. and Zhang, Y., J. Appl. Phys. 102, 054517 (2007).Google Scholar
[7] Koughia, K., et al. ., J. Appl. Phys. 97, 033706 (2005).Google Scholar
[8] Donovan, E. P., et al. ., J. Appl. Phys. 57, 1795 (1985).Google Scholar
[9] Karpov, V. G., Appl. Phys. Lett. 90, 123504 (2007).Google Scholar
[10] Yelon, A., Movaghar, B., and Branz, H. M., Phys. Rev. B 46, 12244 (1992).Google Scholar
[11] Miracle, D. B., et al. ., MRS Bull. 32, 629 (2007).Google Scholar
[12] Roorda, S., et al. ., Phys. Rev. B 44, 3702 (1991).Google Scholar
[13] Ielmini, D., et al. ., IEEE Trans. Electron Devices 56, 1070 (2009).Google Scholar
[14] Im, J., et al. ., Phys. Rev. B 81 245211 (2010).Google Scholar
[15] Ielmini, D., Lacaita, A. L. and Mantegazza, D., IEEE Trans. Electron Devices 54, 308 (2007).Google Scholar
[16] Boniardi, M. and Ielmini, D., Appl. Phys. Lett. 98, 243506 (2011).Google Scholar
[17] Fantini, P., et al. ., Appl. Phys. Lett. 100, 013505 (2012).Google Scholar