Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-21T07:50:19.468Z Has data issue: false hasContentIssue false

Time-Resolved Ellipsometry and Reflectivity Measurements of theOptical Properties of Silicon During Pulsed Excimer Laser Irradiation*

Published online by Cambridge University Press:  25 February 2011

G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Several advances in time-resolved optical measurement techniques have beenmade, which allow a more detailed determination of the optical properties ofsilicon immediately before, during, and after pulsed laser irradiation. Itis now possible to follow in detail the time-resolved reflectivity signalnear the melting threshold; measurements indicate that melting occurs in aspatially inhomogeneous way. The use of time-resolved ellipsometry allowedus to accurately measure the optical properties of the high reflectivity(molten) phase, and of the hot, solid silicon before and after the laserpulse. We obtain n = 3.8, k = 5.2 (±10.1) at λ = 632.8 nm for the highreflectivity phase, in minor disagreement with the published values ofShvarev et al. for liquid silicon. Before and after the high reflectivityphase, the time-resolved ellipsometry measurements are entirely consistentwith the known optical properties of crystalline silicon at temperatures upto its melting point.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Research sponsored by the Division of Materials Sciences, U. S.Department of Energy under contract DE-ACO5-840R21400 with MartinMarietta Energy Systems, Inc.

References

REFERENCES

1. Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E., and Golovchenko, J. A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
2. Lowndes, D. H., Jellison, G. E. Jr., and Wood, R. F., Phys. Rev. B 26, 6747 (1982).Google Scholar
3. Lowndes, D. H., Wood, R. F., and Westbrook, R. D., Appl. Phys. Lett. 43, 258 (1983).Google Scholar
4. Jellison, G. E. Jr., Craven, L. K., and Burke, H. H., private communication.Google Scholar
5. Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1982).Google Scholar
6. Hawkins, W. G. and Biegelsen, D. K., Appl. Phys. Lett. 42, 358 (1983); Sipe, J. E., Young, J. F., Preston, J. S., and van Driel, H. M., Phys. Rev. B 27, 1141 (1983); Young, J. F., Preston, J. S., van Driel, H. M., and Sipe, J. E., Phys. Rev. B 27, 1155 (1983); Young, J. F., Sipe, J. E., and van Driel, H. M., Phys. Rev. B 30, 2001 (1984).Google Scholar
7. Combescot, M., Bok, J., and I la Guillame, C. Benoit, Phys. Rev. B 29, (1984).Google Scholar
8. Azzam, R. M. A. and Bashara, N. M.Ellipsometry and Polarized Light” (North Holland, New York, 1977).Google Scholar
9. Shvarev, K. M., Baum, B. A., and Gel'd, P. V., High Temp. 15, 548 (1977).Google Scholar
10. Jellison, G. E. Jr. and Modine, F. A., Appl. Phys. Lett 41, 1980 (1982).Google Scholar