Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T00:42:20.474Z Has data issue: false hasContentIssue false

Time-Resolved Picosecond Optical Study of Laser-Excited Graphite

Published online by Cambridge University Press:  26 February 2011

C. Y. Huang
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
A. M. Malvezzi
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
J. N. Liu
Affiliation:
GTE Laboratories, 40 Sylvan Road, Waltham, MA 02254
N. Bloembergen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

The pump-and-probe technique is employed to perform picosecond timeresolved measurements of the reflectivity changes in highly oriented pyrolitic graphite excited by 0.532-μm pump pulses. At low pump fluences, the presence of a short-lived plasma and a high-temperature gradient gives rise to an increase in the reflectivity probed at 1.9 μm but causes a decrease at 1.064 μm. At the threshold fluence, 140 mJ/cm2, the reflectivity drops abruptly, marking a phase transformation. Above the threshold, the reflectivity drops to -0.2 from its original value of 0.42 at 1.064 μm and to -0.4 from its ambient value of 0.50 at 1.9 μm. This new phase persists only for a few nanoseconds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lummer, O., Verflussigung der Kohle und Hertellung der Sonnentemperatur, Druck, and Friedr, Verlag von. Vieweg and Sohn, Brunschweg, 1914.CrossRefGoogle Scholar
2. Ryschkewitsch, E., Z. Electrochem. 27, 445 (1921).Google Scholar
3. Whittaker, A. G., Kintner, P. L., Nelson, L. S. and Richardson, N., Aerospace Corp. Rept., SD–TR–81–60, 1981. See also A. G. Whittaker and P.L. Kintner, Carbon 23, 255 (1985).Google Scholar
4. Venkatesan, T., Jacobson, D. C., Gibson, J. M., Elman, B. S., Braunstein, G., Dresselhaus, M. S., and Dresselhaus, G., Phys. REv. Lett. 53, 360 (1984).Google Scholar
5. Liu, J. M., Yen, R., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 39, 755 (1981).Google Scholar
6. Liu, J. M., Kurtz, H., and Bloembergen, N., Appl. Phys. Lett. 41, 643 (1982).Google Scholar
7. Johnson, L. G. and Dresselhaus, G., Phys. Rev. B 7, 2275 (1973) and references therein.CrossRefGoogle Scholar
8. Hove, J. E., in Industrial Carbon and Graphite (Soc. Chem. Ind., London (1958).Google Scholar
9. Bundy, F. P., J. Chem. Phys. 38, 618 (1963), and references therein.CrossRefGoogle Scholar
10. Steinbeck, J, Braustein, G., Dresselhaus, M. S., Elman, B. S. and Venkatesan, T., Mat. Res. Soc. Symp. Proc. 35, 219 (1985).Google Scholar