Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:20:15.162Z Has data issue: false hasContentIssue false

Towards the Synthesis of Atomic Scale Wires

Published online by Cambridge University Press:  15 February 2011

P. A. Anderson
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
L. J. Woodall
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
A. Porch
Affiliation:
School of Electronic and Electrical Engineering, University of Birmingham, Edgbaston, Birmingham, B 15 2TT, U. K.
A. R. Armstrong
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
I. Hussain
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
P. P. Edwards
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Get access

Abstract

Recent work1 has highlighted the possibility that through the introduction of metals into the one-dimensional channels of zeolite L, it may be feasible to engineer charge transport along the channels to produce a unique compound comprising a precise, assembled array of ultrafine, atomic-scale conducting wires embedded within the aluminosilicate framework. Using electron spin resonance (ESR), and microwave cavity perturbation measurements, we examine the properties of these remarkable materials as a function of composition as they approach the insulator to metal transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, P. A., Armstrong, A. R., Edwards, P. P., Angew. Chem. 106, 669 (1994); Angew. Chem., Int. Ed. Engl. 33, 641 (1994).Google Scholar
2. Rabo, J. A., Angell, C. L., Kasai, P. H., Schomaker, V., Discuss. Faraday Soc. 41, 328 (1966).Google Scholar
3. Edwards, P. P., Harrison, M. R., Klinowski, J., Ramdas, S., Thomas, J. M., Johnson, D. C., Page, C. J., J. Chem. Soc., Chem. Commun., 982 (1984).Google Scholar
4. Harrison, M. R., Edwards, P. P., Klinowski, J., Thomas, J. M., Johnson, D. C., Page, C. J., J. Solid State Chem. 54, 330 (1984).Google Scholar
5. Anderson, P. A., Singer, R. J., Edwards, P. P., J. Chem. Soc., Chem. Comm., 914 (1991); P. A. Anderson and P. P. Edwards, ibid., 915 (1991).Google Scholar
6. Anderson, P. A. and Edwards, P. P., J. Am. Chem. Soc. 114, 10608 (1992).Google Scholar
7. Edwards, P. P., Woodall, L. J., Anderson, P. A., Armstrong, A. R., Slaski, M., Chem. Soc. Rev. 22, 305 (1993).Google Scholar
8. Anderson, P. A., Edwards, P. P., Phys. Rev. B 50, 7155 (1994).Google Scholar
9. Waldram, J. R., Porch, A. and Cheah, H.-M., Physica C 232, 189 (1994).Google Scholar