Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T02:21:03.924Z Has data issue: false hasContentIssue false

Transferable Tight-Binding Approach Of Si-H Interactions

Published online by Cambridge University Press:  10 February 2011

Eunja Kim
Affiliation:
Dept. of Physics, University of Nevada, Las Vegas, NV 89154
Seung Mi Lee
Affiliation:
Department of Semiconductor Science and Technology, Jeonju 561–756
Young Hee Lee
Affiliation:
Department of Semiconductor Science and Technology, Jeonju 561–756 Dept. of Physics and Semiconductor Physics Research Center, Jeonju 561–756
Get access

Abstract

We construct transferable tight-binding parameters of silicon-hydrogen interactions, reproducing the electronic energy levels and vibrational frequencies of the silane(SiH4) molecule accurately. The potential function was rescaled with the exponential factor in order to ensure that the potential energy is smooth at an appropriate cut-off distance, which is very important in molecular-dynamics simulations. The parameters have been applied to other molecules and various surfaces such as hydrogenated Si(100) surfaces, for example, monohydride, dihydride, and (3×1) phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For instance, see The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (New York: Springer Verlag 1984).Google Scholar
[2] Sakai, A. and Tatsumi, T., Appl. Phys. Lett. 64, 52(1994).Google Scholar
[3] Tsu, R., Xiao, H. Z., Kim, Y. W., Hasan, M. A., Birndaun, H. K., Green, J. E., Lin, D. S., and Chiang, T. C., J. Appl. Phys. 75, 240(1994).Google Scholar
[4] Copel, M., Tromp, R. M., Phys. Rev. Lett. 72, 1236 (1994).Google Scholar
[5] Chang, K. J. and Chadi, D. J. Phys. Rev. Lett. 60, 1422(1989).Google Scholar
[6] Van der Walle, C. G., Bar-Yam, Y. and Pantilides, S. T., Phys. Rev. Lett. 60, 2761(1988).Google Scholar
[7] Jeong, S. and Oshiyama, A., will be appeared at Phys. Rev. Lett. (December 1, 1997)Google Scholar
[8] Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471(1985).Google Scholar
[9] Buda, F., Chiarotti, G. L., Car, R., and Parrinello, M., Phys. Rev. Lett. 63, 294 (1989).Google Scholar
[10] Mousseau, N. and Lewis, J., Phys. Rev. B41, 3702(1990).Google Scholar
[11] Allan, D. C and Mele, E. J., Phys. Rev. Lett. 53, 826(1984).Google Scholar
[12] Min, B. J., Lee, Y. H., Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B 45, 6839(1992).Google Scholar
[13] Goodwin, L., Skinner, A. J., and Pettifor, D. G., Europhys. Lett. 9, 1701(1989).Google Scholar
[14] Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B 45, 12227 (1992).Google Scholar
[15] Kim, E. and Lee, Y. H., Phys. Rev. B51, 5429 (1995).Google Scholar
[16] Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498(1954).Google Scholar
[17] Yin, M. T. and Cohen, M. L., Phys. Rev. B26, 5668(1982).Google Scholar
[18] Chadi, D. J., Phys. Rev. Lett. 41, 1062(1978); Phys. Rev. B29 785(1984); Phys. Rev. Lett. 59, 1691(1988).Google Scholar
[19] Kim, E., Lee, Y. H., and Lee, J. M., J. Phys.: Condens. Matter 6, 9561(1994).Google Scholar
[20] Beagley, B., Conrad, A. R., Freeman, J. M., Monaghan, J. J., Norton, B. G., and Holywell, G. C., J. Mol. Struct. 11, 371(1972).Google Scholar
[21] Horowitz, D. and Goddard, W. A., J. Mol. Struct. 163, 207 (1988).Google Scholar
[22] Lee, S. M. and Lee, Y. H., Surf. Sci. 347, 329 (1996).Google Scholar
[23] Northrup, J. E., Phys. Rev. B 47, 10032(1993).Google Scholar
[24] Lu, Z. H., Griffiths, K., Norton, P. R., and Sham, T. K., Phys. Rev. Lett. 68, 1343(1992).Google Scholar
[25] Ciraci, S., Butz, R., Oelling, E. M., and Wagner, H., Phys. Rev. B 30, 711(1984).Google Scholar
[26] Zheng, X. M. and Smith, P. V., Surf. Sci. 279, 127(1992).Google Scholar