Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T13:19:37.628Z Has data issue: false hasContentIssue false

Transient and Spatial Radiative Properties of Patterned Wafers during Rapid Thermal Processing

Published online by Cambridge University Press:  15 February 2011

Peter Y. Wong
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, MA 02155.
Ioannis N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, MA 02155.
Cynthia G. Madras
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, MA 02155.
Get access

Abstract

Temperature measurements and processing uniformity continue to be major issues in Rapid Thermal Processing. Spatial and temporal variations in thermal radiative properties of the wafer surface are sources of non-uniformities and dynamic variations. These effects are due to changes in spectral distribution (wafer or heat source), oxidation, epitaxy, silicidation, and other microstructural transformations. Additionally, other variations are induced by the underlying (before processing) and developing (during processing) patterns on the wafer. Numerical simulations of Co silicidation that account for these factors are conducted to determine the radiative properties, heat transfer dynamics, and resultant processing uniformity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sorrell, F. Y., Harris, J. A., and Gyurcsik, R. S., IEEE Trans. Semicond. Manuf., 3 (4), 183 (1990).Google Scholar
2 Wong, P. Y. and Miaoulis, I. N., Rapid Thermal and Integrated Processing II. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 217. Google Scholar
3 Singh, R., Sinha, S., Thakur, R. P. S., and Chou, P., Appl. Phys. Lett., 58 (11), 1217 (1991).Google Scholar
4 Osburn, C. M., Rapid Thermal Processing-Science and Technology, edited by Fair, R. B., (Academic Press, New York, 1993).Google Scholar
5 Moslehi, M. M. et al. , IEEETrans Electron Dev., 39 (1), 4, (1992).Google Scholar
6 Wong, P. Y. and Miaoulis, I. N., Rapid Thermal and Integrated Processing III, edited by Wortman, J. J. et al. (Mat. Res. Soc. Proc. 342, Pittsburgh, PA, 1994) p. 395. Google Scholar
7 Apte, P. P. and Saraswat, K. C., IEEE Trans. Semicond. Manuf., 5 (3), 180 (1992).Google Scholar
8 Renken, W., First International Rapid Thermal Processing Conference, edited by Fair, R. B. and Lojek, B., (RTP, Scottsdale, AZ, 1993) p. 262. Google Scholar
9 Samganeria, M. K. and Öztürk, M. C., Rapid Thermal and Integrated Processing II, edited by Gelpey, J. C. et al. , (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 19. Google Scholar
10 Wong, P. Y. and Miaoulis, I. N., Rapid Thermal and Integrated Processing II. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 217. Google Scholar
11 Vandenabeele, P., Maex, K., and Keersmaecker, R. De, Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D. et al. (Mat. Res. Soc. Proc. 146, Pittsburgh, PA, 1989) p. 149. Google Scholar
12 Kakochke, and Bußmann, , Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D. et al. (Mat. Res. Soc. Proc. 146, Pittsburgh, PA, 1989) p. 473. Google Scholar
13 Cullen, C. W. and Sturm, J. C., Rapid Thermal and Integrated Processing III. edited by Wortman, J. J. et al. (Mat. Res. Soc. Proc. 342, Pittsburgh, PA, 1994) p. 23. Google Scholar
14 Schreutelkamp, R. J. et al. , Appl. Phys. Lett., 61 (19), 2296 (1992).Google Scholar
15 Eichhammer, W., Vandenabeele, P., and Maex, K., Rapid Thermal and Integrated Processing, edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 224, Pittsburgh, PA, 1993) p. 487. Google Scholar
16 Kakoschke, R., Bußmann, E., and Föil, H., Appl. Phys. A, 52, 52 (1991).Google Scholar
17 Shieh, T.-J. and Carter, R. L., IEEE Trans. Electron Dev., 36 (1), 19 (1989).Google Scholar
18 Kumar, C. V. R. Vasanr, Pascual, R., and sayer, M., J. Appl. Phys., 71 (2), 864 (1992).Google Scholar
19 Sorrell, F. Y., Yu, S., and Kiether, W. J., IEEE Trans. Semicond. Manuf., 7 (4), 454 (1994).Google Scholar
20 Meyer, J. R., Kruer, M. R., and Bartoli, F J., J. Appl. Phys., 51 (10), 5513 (1980).Google Scholar
21CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton Florida), E-370 (1983).Google Scholar