Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T10:46:08.224Z Has data issue: false hasContentIssue false

Transient Heating with Graphite Heaters for Semiconductor Processing

Published online by Cambridge University Press:  15 February 2011

John C. C. Fan
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
M. W. Geis
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
Get access

Abstract

Transient heating with graphite heaters has been shown to be very useful in several important semiconductor processing applications. Using stationary and/or movable heaters, we have obtained excellent results in the annealing of ion-implantation damage in Si and GaAs, preparation of epitaxial Ge1−xSix on Si substrates, and recrystallization of Si films on insulators. The advantages of graphite heaters include their ready scalability in area to commercial wafer size and their low capital cost. These heaters are also easily machinable, and their temperature can be rapidly varied. When fully developed, this heating technique should provide an inexpensive and versatile method for commercial processing of many semiconductor materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, Shtyrkov, E. I., Khaibullin, I. B., Zaripov, M. M., Galyatudinov, N. F., and Bayozitov, R. M., Sov. Phys. Semicond. 9, 1309 (1975);Google Scholar
Young, R. T., White, C. W., Clark, G. J., Narayan, J., Christie, W. H., Murakami, M., King, P. W., and Kramer, S. D., Appl. Phys. Lett. 32, 139 (1978);CrossRefGoogle Scholar
Lau, S. S., Tseng, W. F., Nicolet, M–A., Mayer, J. W., Minnucci, J. A., and Kirkpatrick, A. R., Appl. Phys. Lett. 33, 235 (1978).CrossRefGoogle Scholar
2. For example, Gat, A., Gibbons, J. F., Magee, T. J., Peng, J., Deline, V. R., Williams, P., and Evans, C. A., Appl. Phys. Lett. 32, 276 (1978);Google Scholar
Fan, J. C. C., Chapman, R. L., Donnelly, J. P., Turner, G. W., and Bozler, C. O., in Laser and Electron-Beam Solid Interactions and Materials Processing, Hess, Gibbons, and Sigimon, , eds. (Elsevier North Holland, Amsterdam, 1981), p. 261;Google Scholar
Laff, R. A. and Hutchins, G. L., IEEE Trans. Electron. Devices, ED–21, 743 (1974);Google Scholar
Shah, N. J., McMahon, R. A., Williams, J. G. S., and Ahmed, H., in Laser and Electron-Beam Solid Interactions and Materials Processing, Gibbons, , Hess, , and Sigmon, , eds. (Elsevier North Holland, Amsterdam, 1981), p. 201.Google Scholar
3. Drowley, C. and Hu, C., Appl. Phys. Lett. 38, 876 (1981).Google Scholar
4. Brown, W. L., in Laser and Electron-Beam Solid Interactions and Materials Processing, Hess, Gibbons, and Sigmon, , eds. (Elsevier North Holland, Amsterdam, 1981), p. 1.Google Scholar
5. Sealy, B. J., Surridge, R. K., Kular, S. S., and Stephens, K. G., in Proceedings of the International Conference on Defects and Radiation Effects in Semiconductors, Nice, 1978, Albany, J. H., ed., Inst. Phys. Conf. Ser. No. 46 (Institute of Physics, Bristol, 1979), p. 476.Google Scholar
6. Tsaur, B-Y., Donnelly, J. P., Fan, J. C. C., and Geis, M. W., Appl. Phys. Lett. 39, 93 (1981).CrossRefGoogle Scholar
7. Chapman, R. L., Fan, J. C. C., Donnelly, J. P., and Tsaur, B-Y., submitted for publication.Google Scholar
8. Hinkley, E. D., Rediker, R. H., and Lavine, M. C., Appl. Phys. Lett. 5, 110 (1964).Google Scholar
9. Fan, J. C. C., Gale, R. P., Davis, F. M., and Foley, G. H., Appl. Phys. Lett. 37, 1024 (1980).CrossRefGoogle Scholar
10. Tsaur, B-Y., Fan, J. C. C., and Sheng, T. T., Appl. Phys. Lett. 38, 447 (1981).Google Scholar
11. Leamy, H. J., Doherty, C. J., Chiu, K. C. R., Poate, J. M., Sheng, T. T., and Celler, G. K., in Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S., eds. (Academic Press, New York, 1980), p. 581.Google Scholar
12. Geis, M. W., Flanders, D. C., and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).Google Scholar
13. Geis, M. W., Antoniadis, D. A., Silversmith, D. J., Mountain, R. W., and Smith, H. I., Appl. Phys. Lett. 37, 454 (1980).CrossRefGoogle Scholar
14. Tamura, M., Tamura, H., and Tokuyama, T., Jpn. J. Appl. Phys. 19, L23 (1980).CrossRefGoogle Scholar
15. Fan, J. C. C., Geis, M. W., and Tsaur, B-Y., Appl. Phys. Lett. 38, 365 (1981).CrossRefGoogle Scholar
16. Fan, J. C. C. and Zeiger, H. J., Appl. Phys. Lett. 27, 224 (1975).Google Scholar
17. Fan, J. C. C., Zeiger, H. J., and Zavracky, P. M., in Proceedings of the National Workshop on Low Cost Polycrystalline Silicon Solar Cells, (Dallas, 1976), p. 89.Google Scholar
18. Fan, J. C. C., Zeiger, H. J., Gale, R. P., and Chapman, R. L., Appl. Phys. Lett. 36, 158 (1980).Google Scholar
19. Tsaur, B-Y., Fan, J. C. C., Geis, M. W., Silversmith, D. J., and Mountain, R. W., Appl. Phys. Lett. 39, 561 (1981).CrossRefGoogle Scholar
20. Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Maby, E. W., and Antoniadis, D. A., to be published in Appl. Phys. Lett. (January 1982).Google Scholar
21. Maby, E. W., Geis, M. W., LeCoz, Y. L., Silversmith, D. J., Mountain, R. W., and Antoniadis, D. A., Electron Dev. Lett. ED–2, 241 (1981).CrossRefGoogle Scholar
22. Tsaur, B-Y., Fan, J. C. C., and Geis, M. W., submitted for publication.Google Scholar