Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-15T04:07:03.494Z Has data issue: false hasContentIssue false

Twinning Effects in Hg1−xCdxTe(x˜0.2) Grown by THM in the 〈111〉 Direction

Published online by Cambridge University Press:  15 February 2011

Efiezer Weiss
Affiliation:
SCD — Semi-Conductor Devices, Dept. 99, P. O. Box 2250, Haifa 31021, Israel.
Ehud Kedar
Affiliation:
SCD — Semi-Conductor Devices, Dept. 99, P. O. Box 2250, Haifa 31021, Israel.
Nili Mainzer
Affiliation:
SCD — Semi-Conductor Devices, Dept. 99, P. O. Box 2250, Haifa 31021, Israel.
Get access

Abstract

Hg1−xCdxTe crystals with x˜0.2 were grown by the traveling heater method (THM), in either the [111]A or [111]B directions, using oriented CdTe seeds. Twins are sometimes formed during the growth of these crystals. In crystals grown in the [111]A direction the twins, of orientation [511]B, are constantly growing at the expense of the original [111]A oriented grain. Growth in the [111]B direction, on the other hand, suppresses the growth of the twin domain. Photodiodes and capacitors realized on the (111)A plane are markedly superior to those on the twin plane, [511]B. The difference is due to higher fixed charge and larger fast surface state densities in the case of the [511]B plane. These effects are explained by the lattice structures in the {111} and {511} planes and their possible influence on surface reactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Triboulet, R., Duy, T. Nguyen, and Durand, A., J. Vac. Sci. Technol. A 3, 95 (1985).Google Scholar
2. Durand, A., Dessus, J. L., Duy, T. Nguyen, and Barbot, J. F., SPIE Proc. 659, 131 (1986).CrossRefGoogle Scholar
3. Colombo, L., Chang, R. R., Chang, C. J., and Baitred, B. A., J. Vac. Sci. Technol. A 6, 2795 (1988).Google Scholar
4. Genzel, C., Gille, P., Haehnert, I., Kiessling, F. M., and Rudolph, P., J. Cryst. Growth 101, 232 (1990).Google Scholar
5. See Capper, P., Maxey, C. D., Whiffin, P. A. C., and Easton, B. C., J. Cryst. Growth 96, 519 (1989) and references therein.Google Scholar
6. See for example, Koestner, R. J. and Schaake, H. F., J. Vac. Sci. Technol. A 6, 2834 (1988).CrossRefGoogle Scholar
7. Young, K., Kahn, A., and Phillips, J. M., J. Vac. Sci. Technol. B 10, 71 (1992).CrossRefGoogle Scholar
8. Nakagawa, K., Maeda, K., and Takeuchi, S., Appl. Phys. Lett. 34, 574 (1979).Google Scholar
9. Fewster, P. F. and Whiffin, P. A. C., J. Appl. Phys. 54, 4668 (1983).Google Scholar
10. Brown, M. and Willoughby, A. F. W., J. de Physique C6 40, 151 (1979).Google Scholar
11. Weiss, E. and Mainzer, N., J. Vac. Sci. Technol. A 7, 391 (1989).Google Scholar
12. Tanner, L.E. and Ashby, M. F., Phys. Stat. Sol. 33, 59 (1969).Google Scholar
13. Tiller, W. A., The Science of Cystalization: Macroscopic Phenomena and Defect Generation, (Cambridge University Press, Cambridge, 1991), Sec. 7.3, p. 413.CrossRefGoogle Scholar
14. Young, K. and Kahn, A., J. Vac. Sci. Technol. B 4, 1091 (1986).Google Scholar
15. Weiss, E., Kedar, E., and Mainzer, N., submitted to the J. Cryst. Growth.Google Scholar
16. Talasek, R. T. and Syllaios, A. J., J. Electrochem. Soc. 132, 656 (1985).Google Scholar
17. Tong, F.-M., Xiuzhen, Y., Toufang, G., and Guijuan, H., SPIE Proc. 819, 329 (1987).Google Scholar
18. Mainzer, N., unpublished results.Google Scholar
19. See for example, Atkins, P. W., Physical Cemistry, 2nd ed. (Oxford University Press, Oxford, 1982), Chap. 29, p. 1002.Google Scholar