Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T10:50:25.274Z Has data issue: false hasContentIssue false

Two-Dimensional Carbon Nanotube Networks: A Transparent Electronic Material

Published online by Cambridge University Press:  26 February 2011

George Gruner*
Affiliation:
ggruner@ucla.edu, UCLA, Physics & Astronomy, 475 PORTOLA PLAZA 1-129 KNUDSEN HALL,, LOS ANGELES, CALIFORNIA, 90095-1547, United States, 310-8258782, 310-825-5734
Get access

Abstract

The random, two-dimensional network formed of electrically conducting nanoscale wires, called carbon nanotubes, is a transparent electronic material that can be fabricated using room-temperature printing or spraying technologies. Depending on the network density, networks with both metallic- and semiconducting-like attributes can be fabricated. Both display high conductivity, high carrier mobility and optical transparency. The networks also have high mechanical flexibility, robustness and environmental resistance. Application opportunities range from lightweight, transparent conducting films, to electrically conducting fabrics, to active electronic devices and sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lewis, B.G. and Paine, D.C., “Applications and Processing of Transparent Conducting Oxides,” MRS Bull. 25 (8), 22 (2000).Google Scholar
2 Gordon, R.G., “Criteria for Choosing Transparent Conductors,” MRS Bull. 25 (8), 52 (2000).Google Scholar
3 Durkop, T., Getty, S.A., Cobas, Enrique, and Fuhrer, M.S., “Extraordinary Mobility in Semiconducting Carbon Nanotubes,” Nano Lett 4, 35 (2004).Google Scholar
4 Dresselhaus, M.S. and Dai, H., and Editors, Guest, “Carbon Nanotubes: Continued Innovations and Challenges,” MRS Bull. 29 (4), 237 (2004).Google Scholar
5 Shim, J.A., Kam, N.W., and Dai, H., “Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors,” J Am Chem Soc. 123, 11512 (2001).Google Scholar
5a Zhou, C., Kong, J., Yenilmez, E., and Dai, H., “Modulated Chemical Doping of Individual Carbon Nanotubes,” Science 290, 1552 (2000).Google Scholar
6 Torre, G. de la, Blau, W., and Torres, T., “A survey on the functionalization of single walled nanotubes. The chemical attachment of phthalocyanine moieties,” Nanotechnologies 14, 765 (2003).Google Scholar
7 Stadermann, M., Papadakis, S.J., Falvo, M.R., Novak, J., Snow, E., Fu, Q., Liu, J., Fridman, Y., Boland, J.J., Superfine, R., and Washburn, S., “Nanoscale study of conduction through carbon nanotube networks,” Phys. Rev. B69, 201402(R) (2004).Google Scholar
8 Zhou, Y., Gaur, A., Hur, S.-H., Kocabas, C., Meitl, M. A., Shim, M., Rogers, J. A, “p-Channel, n-Channel Thin Film Transistors and p-n Diodes Based on Single Wall Carbon Nanotube Networks”, Nano Lett. 4, 2031 (2004)Google Scholar
9a Armitage, N.P., Gabriel, J-C.P., and Gruner, G., “Langmuir-Blodgett nanotube films,” Appl. Phys. Lett. 2003 Google Scholar
9b Hu, L., Hecht, D.S., and Grüner, G., “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4 (12), 25132517 (2004)Google Scholar
10 Zhou, Y, Hu, L., and Grüner, G., “A Printing Method for carbon nanotube thin films,” (to be published)Google Scholar
11 Kaempgen, M., Duesberg, G.S., and Roth, S.Transparent Carbon Nanotube Coatings,” Appl. Surf. Sci., 252, 425 (2005)Google Scholar
12 The conductivity is calculated by assuming that nanotubes fully fill the space, this assumption is clearly not valid, and leads to an underestimation of the conductivity.Google Scholar
13 Meitl, M.A., Zhou, Y., Gaur, A., Jeon, S., Usrey, M.L., Strano, M.S., and Rogers, J.A., Nano Lett. 4, 1643 (2004)Google Scholar
14 Dai, Hongjie, “Growth and Characterization of Carbon Nanotubes”, book chapter in “Topics in Applied Physics”, Vol. 80, “Carbon Nanotubes”, Edited by Dresselhaus, M., Dresselhaus, G. and Avouris, P., Springer Verlag (2000).Google Scholar
15 Wu, Z.C., Chen, Z.H., Du, X., et al. “Transparent, conductive carbon nanotube films,” Science, 305, 1273 (2004)Google Scholar
16 Stauffer, G., “Introduction to Percolation Theory,” Taylor & Francis: London, 1985 Google Scholar
17a Vavro, J., Kikkawa, J.M., and Fischer, J.E., “Metal-Insulator Transition in Doped Single Wall Carbon Nanotubes,” Physical Review B 71, 155410 (2005)Google Scholar
17b Bakyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., and Haddon, R.C., “Electronic Properties of Single-Walled Carbon Nanotube Networks,” J. Am. Chem. Soc., 127, 5990 (2005)Google Scholar
18 Kaiser, A.B., Düsberg, G., and Roth, S., “Heterogeneous model for conduction in carbon nanotubes,” Physical Review B (Condensed Matter and Materials Physics), 57, 1418 (1998)Google Scholar
19 Grüner, G., “Nonlinear and frequency-dependent transport phenomena in low dimensional conductors,” Physica D: Nonlinear Phenomena, 8, 1 (1983)Google Scholar
20 Dressel, M., and Gruner, G., “Electrodynamics of Solids,” Cambridge University Press, 2002 Google Scholar
21 Ruzicka, B. and Degiorgi, L., “Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films,” Phys. Rev. B61, R2468 (2000)Google Scholar
22 Bokrath, et al. “Chemical Doping of Individual semiconducting carbon nanotube ropes,” Phys. Rev B 61, 10606 (2000)Google Scholar
23 Bradley, K., Gabriel, J.C., Briman, M., Star, A., Gruner, G., “Charge Transfer from Ammonia Physisorbed on Nanotubes,” Phys. Rev Lett. 91 (21), 218301 (2003)Google Scholar
24 Siddons, G. P., Merchin, D., Back, J. H., Jeong, J. K., Shim, M., “Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes,” Nano Lett. 4, 927931(2004)Google Scholar
25a Star, A., Han, T-R, Gabriel, J-C.P., Bradley, K., and Grüner, G., “Interaction of AromaticCompounds with Carbon Nanotubes,” Nano Letters, 3 (10), 14211423 (2003)Google Scholar
25b Bradley, K., Briman, M., Star, A., Gruner, G., “Charge Transfer from Adsorbed Proteins”, Nano Lett. 4, 253256 (2004)Google Scholar
26 Hecht, D.S., Hu, L., and Gruner, G., “Electronic Properties of Carbon Nanotube/Fabric Composites,” Accepted in Current Applied Physics (2005 )Google Scholar
27 Hu, L., Li, D., Zhou, Y., Kaner, R. and Gruner, G., “Patterned transport carbon nanotube electrodes for electrochromatic device applications,” (to be published)Google Scholar
28 Shan, B. and Cho, K.First-Principles study of Work Functions of Single Wall Carbon NanotubesPhys. Rev. Lett. 94 (23), 236602 (2005)Google Scholar
29 de Jonge, N., Allioux, M., Doytcheva, M., Kaiser, M., Teo, K.B.K., Lacerda, R.G. and Milne, W.I.. “Characterization of the field emission properties of individual thin carbon Nanotubes,” Appl. Phys. Lett. 85, 1607 (2004)Google Scholar
30 Gruner, G., Patent ApplicationGoogle Scholar
31 Gabriel, J.C.P, Mater. Res. Symp. Proc. 762, Q.12.7.1 (2003)Google Scholar
32 Snow, E.S., Novak, J., Campbell, P.M., Park, D., “Random networks of carbon nanotubes as an electronic material,” Appl. Phys. Lett. 82 (13), 2145 (2003)Google Scholar
33 Bradley, K., Gabriel, J-C.P., and Grüner, G., “Flexible Nanotube Electronics,” Nano Letters, 3 (10), 1353 (2003)Google Scholar
34 Artukovic, E., Kaempgen, M., Hecht, D.S., Roth, S., and Grüner, G., “Transparent and Flexible Carbon Nanotube Transistors,” Nano Lett. 5 (4), 757 (2005)Google Scholar
35 Hur, S.-H., Yoon, M.-H., Gaur, A., Shim, M., Facchetti, A., Marks, T.J. and Rogers, J.A., “Organic Nanodielectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logic Gates,” Journal of the American Chemical Society 127(40), 13808 (2005)Google Scholar
36a Hecht, D.S., Ramirez, R.A., Artukovic, E., Briman, M., Chichak, K., Stoddart, J.F., Gruner, G., “Bio-inspired Detection of Light using Porphyrin Sensitized Carbon Nanotube FETs,” Submitted (2005)Google Scholar
36b Star, A., Lu, Y., Bradley, K., Gruner, G., “Nanotube optoelectronic memory devices.Nano Lett. 4 1587 (2004).Google Scholar
37 Orgacon™ EL – P3000, AGFAGoogle Scholar