Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:32:35.976Z Has data issue: false hasContentIssue false

Ultrasonic Non Destructive Evaluation of Microstructural Changes and Degradation of Ceramics at High Temperature

Published online by Cambridge University Press:  21 February 2011

Christian Gault*
Affiliation:
ENSCI, UA CNRS 320, Avenue Albert Thomas, 87065 LIMOGES, FRANCE
Get access

Abstract

This paper deals with the use of pulsed ultrasonic waves to monitor microstructural changes and degradation of ceramics in the field of high temperature. Two types of devices are described. One is a low frequency system for the measurement of Young's modulus at temperatures up to 1800°C. The second is an ultrasonic spectroscopy system for the evaluation of damage in structural ceramics during thermal fatigue experiments. Applications concern phase changes, porosity evolution or microcracking induced by thermal stresses when heating monolithic or composite ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Kessler, L.W. and Gasiel, T.M., Adv. Ceram. Mater. 2, 4, 107 (1987).CrossRefGoogle Scholar
2- Bhardwaj, M.C., Adv. Ceram. Mater. 3, 3A (1987).Google Scholar
3- Papadakis, E.P., J. Acoust. Soc. Amer. 42, 5, 1046 (1967).CrossRefGoogle Scholar
4- Papadakis, E.P., Fowler, K.A., Lynnworth, L.C., Robertson, A., and Zysk, E.D., Jour. of Appl. Phys., 45, 6, 2409 (1974).CrossRefGoogle Scholar
5- Gault, C., Lamidieu, P., Platon, F., at 6 th International Conference on Non Destructive Testing Methods, Strasbourg, France, CGA - Alcatel Publ. (1986), p. 85.Google Scholar
6- Gault, C., Platon, F. and Bras, D. Le, Mater. Sci. Engn, 74, 105 (1985).CrossRefGoogle Scholar
7- Lamidieu, P. and Gault, C., Mater. Sci. and Engn., 77, L 11 (1986).CrossRefGoogle Scholar
8- Lynnworth, L.C., IEEE Trans. Sonics and Ultrasonics, Su–22, 2, 71 (1975).CrossRefGoogle Scholar
9- Lamidieu, P. and Gault, C., Rev. Phys. Appl. 23, 201 (1988).CrossRefGoogle Scholar
10- Boch, P., Coudert, J. F., Gault, C., in Ceramic Components for Engines, KTK Scientific Publishers, TOKYO (1984) p. 682.Google Scholar
11- Kline, R.A., J. Acouts. Soc. Amer. 76, 2, 498 (1984).CrossRefGoogle Scholar
12- Lamidieu, P., Jacques, D., Gault, C., Coudert, J. F., in Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (Published by Verlag Deutsche Keramusche Gesellschaft, 1986), p. 869.Google Scholar
13- Lamidieu, P., Dr. Thesis, Limoges University, France (1987).Google Scholar
14- Papadakis, E.P., in Physical Acoustics, vol IV, part B, chap. 15, edited by Mason, W.P. (Academic Press, New York and London, 1968) p. 269.Google Scholar
15- Boch, P. and Giry, J.P., High Technology Ceramics, edited by Vincenzini, P. (Elsevier, 1987).Google Scholar
16- Rouxel, T. and Besson, J.L., ENSCI Limoges, France (Private Com.).Google Scholar
17- Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 10 (1962), 3125.CrossRefGoogle Scholar
18- Hill, R., J. Mech. Phys. Solids 11 (1963), 357.CrossRefGoogle Scholar
19- Ondracek, G., Mater. Chem. and Phys., 15, 281 (1986).CrossRefGoogle Scholar
20- Nielsen, L.F., Mater. Sci. and Engn. 52, 39 (1982).CrossRefGoogle Scholar
21- Phani, K.K., Niyogi, S.K., Jour. of Mater. Sci. Let.. 5, 427 (1986).CrossRefGoogle Scholar
22- Wachtman, J.B. Jr., Tefft, W.E., Lam, D.G. and Apstein, C.S., Phys. Rev. 122, 6, 1754 (1961).CrossRefGoogle Scholar
23- Gaillard, J.M., Limoges, E.N.S.C.I., France (Private Communication).Google Scholar
24- Hasselman, D.P.H., Suigh, J.P., Am. Ceram. Soc. Bull. 58, 9, 856 (1979).Google Scholar
25- Case, E.D., Smyth, J.R. and Hunter, O., Mater. Sci. Engin. 51, 175 (1981).CrossRefGoogle Scholar
26- Ohya, Y., Nakagawa, Z.E., Hamano, K., J. Am. Ceram. Soc. 70, 8, C184 (1987).CrossRefGoogle Scholar