Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:18:36.198Z Has data issue: false hasContentIssue false

A Unified Computational Approach to Oxide Aging Processes

Published online by Cambridge University Press:  10 February 2011

Harold P. Hjalmarson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87111
Peter A. Schultz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87111
Duane J. Bowman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87111
Daniel M. Fleetwood
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87111
Get access

Abstract

In this paper we describe a unified, hierarchical computational approach to aging and reliability problems caused by materials changes in the oxide layers of Si-based microelectronic devices. We apply this method to a particular low-dose-rate radiation effects problem.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 1982).Google Scholar
[2] Lenahan, P. M. and Conley, J. J. F., J. Vac. Sci. Tech. B 16, 2134 (1998).Google Scholar
[3] Enlow, E. W. et al., IEEE Trans. Nucl. Sci. NS–38, 1342 (1991).Google Scholar
[4] Nowlin, R. N. et al., in Proceedings 1991 IEEE Bipolar Circuits and Technology Meeting (IEEE, NY, 1991), pp. 174177.Google Scholar
[5] Johnston, A. H., Rax, B. G., and Lee, C. I., IEEE Trans. Nucl. Sci. 42, 1650 (1995).Google Scholar
[6] Johnston, A. H., Lee, C. I., and Rax, B. G., IEEE Trans. Nucl. Sci. 43, 3049 (1996).Google Scholar
[7] Pease, R. L. et al., IEEE Trans. Nucl. Sci. 44, 1981 (1997).Google Scholar
[8] Schmidt, D. M. et al., IEEE Trans. Nucl. Sci. 42, 1541 (1995).Google Scholar
[9] Schrimpf, R. D. et al., IEEE Trans. Nucl. Sci. 42, 1641 (1995).Google Scholar
[10] Fleetwood, D. M. et al., IEEE Trans. Nucl. Sci. 43, 2537 (1996).Google Scholar
[11] Sze, S. M., Physics of Semiconductor Devices (J. Wiley and Sons, New York, 1981).Google Scholar
[12] Sokel, R. and Hughes, R. C., J. Appl. Phys. 53, 7414 (1982).Google Scholar
[13] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971).Google Scholar
[14] Developed and written by Sears, M. P. and Schultz, P. A. at Sandia National Laboratories, Albuquerque, NM 87185.Google Scholar
[15] Hjalmarson, H. P. (unpublished).Google Scholar
[16] Pinto, M. R., Rafferty, C. S., and Dutton, R. W., Technical report, Stanford Electronics Laboratories, Stanford University (unpublished).Google Scholar
[17] Nagel, L. W., Technical Report No. Memorandum No. ERL-M520, Electronic Research Laboratory, College of Engineering, University of California, Berkeley (unpublished).Google Scholar
[18] Fjeldly, T. A., Ytterdal, T., and Shur, M., Introduction to Device Modeling and Circuit Simulation (John Wiley and Sons, Inc., New York, NY, 1998).Google Scholar
[19] Stahlbush, R. E., Edwards, A. H., Griscom, D. L., and Mrstik, B. J., J. Appl. Phys. 73, 658 (1993).Google Scholar
[20] Brower, K. L., Phys. Rev. B 38, 9657 (1988).Google Scholar
[21] Brower, K. L., Phys. Rev. B 42, 3444 (1990).Google Scholar
[22] Witczak, S. C. et al., IEEE Trans. Nucl. Sci. 44, 1989 (1997).Google Scholar