Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T16:08:05.106Z Has data issue: false hasContentIssue false

Uniform Quantum Wire and Quantum Dot Arrays by Natural Self-Faceting on Patterned Substrates

Published online by Cambridge University Press:  10 February 2011

Richard Nötzel
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany, notzel@pdi-berlin.de
Jörg Fricke
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Zhichuan Niu
Affiliation:
Department of Materials Science, Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, California 90089-0241, USA
Uwe Jahn
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Klaus-Jürgen Friedland
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Manfred Ramsteiner
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Hans-Peter Schönherr
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Achim Trampert
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Klaus H. Ploog
Affiliation:
Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Get access

Abstract

The combination of self-organized growth on high-index substrates with lithographic patterning and atomic hydrogen assistance allows the fabrication of GaAs quantum wires and quantum dots as well as coupled wire-dot arrays with superior structural and electronic properties by molecular beam epitaxy. The selectivity of patterned growth on high-index substrates differs qualitatively from that on low-index ones thus producing quantum wire and quantum dot structures which fulfill the stringent criteria on the geometrical features to be met for useful devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eberl, K., Petroff, P.M., and Demeester, P. (editors), Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates (NATO Advanced Sci. Inst. Ser. E., Vol. 298, Kluwer, Dordrecht, 1995).Google Scholar
2. Nötzel, R., Niu, Z.C., Ramsteiner, M., Schönherr, H.P., Trampert, A., Däweritz, L., Ploog, K.H., Nature 392, 56 (1998).Google Scholar
3. Nötzel, R., Däweritz, L., Ploog, K., Phys. Rev. B 46, 4736 (1992).Google Scholar
4. Niötzel, R., Eißler, D., Hohenstein, M., Ploog, K., J. Appl. Phys. 74, 431 (1993).Google Scholar
5. Schwoebel, R.L., J. Appl. Phys. 40, 614 (1969).Google Scholar
6. Nötzel, R., Temmyo, J., Tamamura, T., Appl. Phys. Lett. 64, 3557 (1994).Google Scholar
7. Fukui, T. and Saito, H., Jpn. J. Appl. Phys. 29, L483 (1990).Google Scholar
8. Morishita, Y., Nomura, Y., Goto, S., Katayama, Y., Appl. Phys. Lett. 67, 2500 (1995).Google Scholar
9. Okada, Y., Sugaya, T., Ohta, S., Fujita, T., Kawabe, M., Jpn. J. Appl. Phys. 34, 238 (1995).Google Scholar
10. Schönherr, H.P., Fricke, J., Niu, Z.C., Friedland, K.J., Nötzel, R., Ploog, K.H., Appl. Phys. Lett. 72, 566 (1998).Google Scholar
11. Friedland, K.J., Schönherr, H.P., Nötzel, R., Ploog, K.H., submitted to Phys. Rev. B.Google Scholar
12. Nötzel, R., Menniger, J., Ramsteiner, M., Ruiz, A., Schönherr, H.P., Ploog, K.H., Appl. Phys. Lett. 68, 1132 (1996).Google Scholar
13. Nötzel, R., Ramsteiner, M., Menniger, J., Trampert, A., Schönherr, H.P., Däweritz, L., Ploog, K.H., J. Appl. Phys. 80, 4108 (1996).Google Scholar
14. Richter, A., Behme, G., Süptitz, M., Lienau, Ch., Elsässer, T., Ramsteiner, M., Nötzel, R., Ploog, K.H., Phys. Rev. Lett. 79, 2145 (1997).Google Scholar
15. Nötzel, R., Ramsteiner, M., Niu, Z.C., Schönherr, H.P., Däweritz, L., Ploog, K.H., Appl. Phys. Lett. 70, 1578 (1997).Google Scholar
16. Nötzel, R., Ramsteiner, M., Niu, Z.C., Däiweritz, L., Ploog, K.H., in 1997 IEEE Int. Symp.Compound Semicond., edited by Melloch, M. and Reed, M.A. (IEEE97TH8272, Inst. Phys. Publ., Bristol, 1997) p. 65.Google Scholar
17. Nötzel, R., Jahn, U., Niu, Z.C., Trampert, A., Fricke, J., Schönherr, H.P., Kurth, T., Heitmann, D., Däiweritz, L., Ploog, K.H., Appl. Phys. Lett. 72, 2002 (1998).Google Scholar
18. Niu, Z.C., Nötzel, R., Jahn, U., Ramsteiner, M., Schönherr, H.P., Fricke, J., Xiao, Z.B., Däiweritz, L., Ploog, K.H., Appl. Phys. A 67, 135 (1998).Google Scholar
19. Fricke, J., Nötzel, R., Jahn, U., Schönherr, H.P., Däiweritz, L., Ploog, K.H., J. Appl. Phys., in press.Google Scholar
20. Hess, H.F., Betzig, E., Harris, T.D., Pfeiffer, L.N., West, K.W., Science 264, 1740 (1994).Google Scholar
21. Marzin, J.Y., Gerard, J.M., Izrael, A., Barrier, D., Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar