Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T12:31:26.401Z Has data issue: false hasContentIssue false

UV Multiphoton Dissociation of Group VIB Hexacarbonyls and Derivatives

Published online by Cambridge University Press:  28 February 2011

George W. Tyndall
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
Robert L. Jackson
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
Get access

Abstract

Formation of electronically excited metal atoms via excimer laser multiphoton dissociation of Cr(CO)6, C6H6Cr(CO)3, and Mo(CO)6 has been examined in the gas phase. The dissociation mechanism was studied by determining the laserfluence- dependence and buffer-gas-pressure dependence of the metal atom emission intensity. Each of these species was found to form metal atoms via two-photon and three-photon dissociation processes. The data suggest that dissociation occurs by both direct and sequential processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Houle, F. A., Appl. Phys. A, 41, 315 (1986).CrossRefGoogle Scholar
2. Mechanistic information on MPD of metal carbonyls and derivatives has been obtained in multiphoton ionization studies. See ref. 3–5 and references cited therein.Google Scholar
3. Whetten, R. L., Fu, K.-J., and Grant, E. R., J. Chem. Phys., 79, 4899 (1983).CrossRefGoogle Scholar
4. Gedanken, A., Robin, M. B., and Kuebler, N. A., J. Phys. Chem., 86, 4096 (1982).CrossRefGoogle Scholar
5. Fisanick, G. J., Gedanken, A., Eichelberger, T. S. IV, Kuebler, N. A., and Robin, M. B., J. Chem. Phys., 75, 5215 (1981).CrossRefGoogle Scholar
6. Tyndall, G. W. and Jackson, R. L., J. Am. Chem. Soc., 109, 582 (1987).CrossRefGoogle Scholar
7. Mayer, T. M., Fisanick, G. J., and Eichelberger, T. S. IV, J. Appl. Phys., 53, 8462 (1981).CrossRefGoogle Scholar
8. Boyer, P. K., Moore, C. A., Solanki, R., Ritchie, W. K., Roche, G. A., and Collins, G. J., Mat. Res. Soc. Symp. Proc., 17, 119 (1983).CrossRefGoogle Scholar
9. Yokoyama, H., Uesugi, F., Kishida, S., and Washio, K., Appl. Phys. A, 37, 25 (1985).CrossRefGoogle Scholar
10. Chiu, M. S., Tseng, Y. G., and Ku, Y. K., Optics Lett., 10, 113 (1985).CrossRefGoogle Scholar
11. Based on assignments of Kiess, C. C., J. Res. Natl. Bur. Std., 51, 247 (1953).CrossRefGoogle Scholar
12. Gerrity, D. P., Rothberg, L. J., and Vaida, V., J. Phys. Chem., 87, 2222 (1983).CrossRefGoogle Scholar
13. Fletcher, T. R. and Rosenfeld, R. N., J. Am. Chem. Soc., 107, 2203 (1985).CrossRefGoogle Scholar
14. Seder, T. A., Church, S. P., and Weitz, E., J. Am. Chem. Soc., 108, 4721 (1986).CrossRefGoogle Scholar
15. Tumas, W., Gitlin, B., Rosan, A. M., and Yardley, J. T., J. Am. Chem. Soc., 104, 55 (1982).CrossRefGoogle Scholar
16. Bray, R. G., Seidler, P. F., Gethner, J. S., and Woodin, R. L., J. Am Chem. Soc., 108, 1312 (1986).CrossRefGoogle Scholar
17. Fletcher, T. R. and Rosenfeld, R. N., J. Am. Chem. Soc., 108, 1686 (1986).CrossRefGoogle Scholar
18. Estimated from k=σϕ−1, where σ is the absorption cross section of Cr(CO)4 at 248 nm, ϕ is the quantum yield, F is the average photon flux in units of photons-cm−2-pulse−1, and τ is the full 1ength of the laser pulse. At 20 mJ-cm−2 and τ=45 ns. as measured, assuming that ϕ=1, and that at σ=σCr(CO)6 at 248 nm (5.6×10−17 cm2), k=3×107 s−1.Google Scholar
19. Hellner, L., Masanet, J., and Vermeil, C., Nouv. J. Chim., 3, 721 (1979).Google Scholar
20. Leutwyler, S., Even, U., and Jortner, J., Chem. Phys. Lett., 84, 188 (1981).CrossRefGoogle Scholar
21. See the theoretical discussion of Ohmichi, N., Silberstein, J., and Levine, R. D., Chem. Phys. Lett., 84, 228 (1981).CrossRefGoogle Scholar
22. Cundall, R. B., “Transfer and Storage of Energy by Molecules, Vol. I: Electronic Energy”, Burnett, G. M., and North, A. M., ed., Wiley-Interscience: London, 1968, pp.163.Google Scholar
23. Assignments made from Whaling, W., Hannaford, P., Lowe, R. M., Biemont, E., and Grevesse, N., J. Quant. Spectrosc. Rad. Transfer, 32, 69 (1984) and references cited therein.CrossRefGoogle Scholar
24. Mo emission was not observed upon unfocused 351 nm irradiation of Mo(CO)6.Google Scholar