Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T11:35:56.897Z Has data issue: false hasContentIssue false

Vacancy-Type Defects in Ion-Implanted Si Studied By Slow Positron Beam

Published online by Cambridge University Press:  26 February 2011

P. Hautojdärvi
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
P. Huttunen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
J. Mäkinen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
E. Punkka
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
A. Vehanen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
Get access

Abstract

Variable-energy positron beam studies have been made on ion implanted silicon. After 35, 60 and 100 keV H+ implantation a clear separation between vacancy and H atom distributions was found. In 100 keV As+ and P+ implanted Si the damaged layer extends to 300 and 400 nm, respectively, far beyond the the range of implanted atoms and the amorphous layer. Effect of thermal and laser annealing is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dannefaer, S., Phys. Stat. Sol. (a) 102, 481 (1987).Google Scholar
2.Corbel, C., Stucky, M., Hautojärvi, P., Saarinen, K., and Moser, P., these proceedingsGoogle Scholar
3.Mills, A.P. Jr, in Positron Solid State Physics, edited by Brandt, W. and Dupasquier, A. (North-Holland, Amsterdam, 1983) p. 432.Google Scholar
4.Hautojärvi, P., Huomo, H., Lahtinen, J., Mäkinen, J., and Vehanen, A., in Defects in Semiconductors, edited by von Bardeleben, H.J., Materials Science Forum, vols. 10–12, (Trans Tech Publications, Switzerland, 1986) p. 527.Google Scholar
5.Lahtinen, J., Vehanen, A., Huomo, H., Mäkinen, J., Huttunen, P., Rytsölä, K., Bentzon, M., and Hautojärvi, P., Nucl. Instr. Meth. B 17, 73 (1986).Google Scholar
6.Mäkinen, J., Vehanen, A., Hautojärvi, P., Huomo, H., Lahtinen, J., Nieminen, R.M., and Valkealahti, S., Surf. Sci. 175, 385 (1986).Google Scholar
7.Lynn, K. G., Chen, D. M., Nielsen, B., Pareja, R., and Meyers, S., Phys. Rev. B 34, 1449 (1986)Google Scholar
8.Keinonen, J., Hautala, M., Erola, M., Lahtinen, J., Huomo, H., Vehanen, A., and Hautojarvi, P., submitted to Phys. Rev. B.Google Scholar
9.Stein, H. J., Vook, F. L. and Bardus, J.A., Appl. Phys. Lett. 16, 106 (1970).Google Scholar
10.Stein, H. J. and Beezhold, W., Appl. Phys. Lett. 17, 442 (1970).Google Scholar
11.Stein, H. J., Vook, F. L., Brice, D. K., Borders, J. A., and Picraux, S. T., Rad. Eff. 6, 19 (1970).Google Scholar
12.Keinonen, J., Hautala, M., Rauhala, E., Erola, M., Lahtinen, J., Huomo, H., Vehanen, A., and Hautojärvi, P., Phys. Rev. B 36, 1344 (1987).Google Scholar
13.Morelead, F. F. Jr, Crowder, B. L., Title, R. S., J. Appl. Phys. 43, 1112 (1972).Google Scholar
14.Narayan, J., Fletcher, J. and Eby, R., Proc. of MRS Annual Meeting, ed. Narayan, and Tan, (1980), p. 409.Google Scholar
15.Parisini, A., Bourret, A., and Armigliato, A., to be published.Google Scholar
16.White, C. W., Wilson, R. G., Appleton, B. R., Young, R. T., J. Appl. Phys. 51, 738 (1980)Google Scholar