Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:42:39.866Z Has data issue: false hasContentIssue false

Variation in the Einstein Temperature of Guest Atoms in Ba-Ge-X type-III Clathrate Compounds

Published online by Cambridge University Press:  01 February 2011

Katsushi Tanaka
Affiliation:
katsushi-tanaka@mtl.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Yoshidahon-machi, Sakyo-ku, Kyoto, 606-8501, Japan, +81-75-753-5461, +81-75-753-5461
Jung-Hwan Kim
Affiliation:
jhkim@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Yoshidahon-machi, Sakyo-ku, Kyoto, 606-8501, Japan
Kyosuke Kishida
Affiliation:
k.kishida@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Yoshidahon-machi, Sakyo-ku, Kyoto, 606-8501, Japan
Haruyuki Inui
Affiliation:
haruyuki.inui@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Yoshidahon-machi, Sakyo-ku, Kyoto, 606-8501, Japan
Get access

Abstract

Einstein temperatures of guest atoms in Ba-Ge-(Al, In) type-III clathrate compounds have been estimated from the temperature dependence of the atomic displacement parameters determined by synchrotron X-ray powder diffractions. The lowest temperature is obtained for the vibration of Ba(2) atoms along the x-direction, which corresponds to the “rattling motion” of the guest atoms in the compounds. The temperature estimated is significantly low of about 50 K, which agrees with the fact that the compounds have small lattice thermal conductivities of about 0.6 W/mK. Though the lattice thermal conductivity of Ba24Ge88Al12 is larger than that of Ba24Ge88In12, the Einstein temperature of Ba24Ge88Al12 is slightly smaller than that of Ba24Ge88In12. This discrepancy can be explained by the consideration of higher Debye temperature of Ba24Ge88Al12 than that of Ba24Ge88In12, that is, lattice thermal conductivity without “rattling motion” is larger for Ba24Ge88Al12 than that for Ba24Ge88In12.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slack, G. A., “CRC Handbook of Thermoelectrics”, edited by Rowe, D. M. (CRC, Boca Raton, FL, 1995), p. 407.Google Scholar
2. Nolas, G. S., Cohn, J. L., Slack, G. A., and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
3. Dong, J. J., Sankey, O. F., and Mylers, C. W., Phys. Rev. Lett. 86, 2361 (2001).Google Scholar
4. Nolas, G. S., Sharp, J., and Goldsmid, H. J., “Thermoelectrics: Basic Principles and New Materials Developments” (Springer, New York, 2001), p.191.Google Scholar
5. Fukuoka, H., Iwai, K., Yamanaka, S., Abe, H., Yoza, K., and Häming, L., J. Solid State Chem. 151, 117 (2000).Google Scholar
6. Kim, S. J., Hu, S., Uher, C., Hogan, T., Huang, B., Corbett, J. D., and Kanatzidis, M. G., J. Solid State Chem. 153, 321 (2000).Google Scholar
7. Hahn, T., “International Tables for Crystallography. Space-Group Symmetry” (Kluwer Academic, Boston, MA, 1996), Vol. A.Google Scholar
8. Okamoto, N. L., Kim, J. H., Tanaka, K., and Inui, H., Acta Mater. 54, 5519 (2006).Google Scholar
9. Sevov, S. C., “Intermetallic Compound. Principle and Practice”, edited by Westbrook, J. H. and Fleischer, R. L. (Wiley, Chichester, UK, 1994), Vol. 3, p. 122.Google Scholar
10. Zhao, J. T. and Corbett, J. D., Inorg. Chem. 33, 5721 (1994).Google Scholar
11. Carrillo-Cabrera, W., Curda, J., Schnering, H. G., Paschen, S., and Grin, Y., Z. Kristallogr. 215, 207 (2000).Google Scholar
12. Kim, J. H., Okamoto, N. L., Kishida, K., Tanaka, K., and Inui, H., Acta Mater. 54, 2057 (2006).Google Scholar
13. Izumi, F. and Ikeda, T., Mater. Sci. Forum 321, 198 (2000).Google Scholar
14. Christensen, M., Lock, N., Overgaard, J., and Iversen, B. B., J. Am. Chem. Soc. 128, 15657 (2006).Google Scholar
15. Bentien, A., Nishibori, E., Paschen, S., and Iversen, B. B., Phys. Rev. B 71, 144107 (2005).Google Scholar
16. Sales, B. C., Mandrus, D., and Chakoumakos, B. C., “Recent Trends in Thermoelectrics Materials Reaserch II, Semiconductors and Semimetals” Vol. 70, edited by Tritt, T. M. (Academic, San Diego, 2001), Chap. 1, p. 1.Google Scholar
17. Mylers, C. W., Dong, J. J., and Sankey, O. F., Phys. Status Solidi B 239, 26 (2003).Google Scholar
18. Kim, J. H., Okamoto, N. L., Kishida, K., Tanaka, K., and Inui, H., J. Appl. Phys. 102, 034510 (2007).Google Scholar
19. Kim, J. H., Okamoto, N. L., Kishida, K., Tanaka, K., and Inui, H., J. Appl. Phys. 102, 094506 (2007).Google Scholar