Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T22:58:00.264Z Has data issue: false hasContentIssue false

Visible Luminescence from Silicon: Quantum Confinement or Siloxene?

Published online by Cambridge University Press:  03 September 2012

M. S. Brandt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
H. D. Fuchs
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
A. Höpner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
M. Rosenbauer
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
M. Stutzmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
J. Weber
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
M. Cardona
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
H. J. Queisser
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D 7000 Stuttgart 80, Germany
Get access

Abstract

The discovery of strong visible photoluminescence at room temperature from porous silicon has triggered new hope that light-emitting devices compatible with existing Si-technology might become possible. We first review the luminescence behavior observed in silicon-based materials such as amorphous Si, microcrystalline Si, or SiO2. We then critically discuss the present model for the luminescence from porous silicon based on quantum confinement in view of the growing experimental evidence for the importance of both hydrogen and oxygen to obtain efficient luminescence from this material. We propose an alternative explanation based on the presence of siloxene (SieO3H6) in porous silicon which is corroborated by experimental results obtained with photoluminescence, Raman and IR spectroscopy. An important aspect is that siloxene can be prepared by methods different from anodic oxidation, and one particular technique will be described together with possible ways to tune the luminescence energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Haynes, J. R. and Westphal, W. C., Phys. Rev. 101, 1676 (1956).CrossRefGoogle Scholar
[2] Newman, R., Phys. Rev. 100, 700 (1955).Google Scholar
[3] Härtung, J., Hansson, L. A., and Weber, J., in Proc. of the 20th Intern. Conf. on Physics of Semiconductors, ed. Anastassakis, E. M. and Joannopoulos, J. D. (World Scientific, Singapore, 1990), p. 1875.Google Scholar
[4] Betzler, K., Weiler, T., and Conradt, R., Phys. Rev. B 6, 1394 (1972).Google Scholar
[5] Steele, A. G., McMullan, W. G., and Thewalt, M. L. W., Phys. Rev. Lett. 59, 2899 (1987).CrossRefGoogle Scholar
[6] Davies, G., Phys. Rep. 176, 83 (1989).CrossRefGoogle Scholar
[7] Canham, L. T., Barraclough, K. G., and Robbins, D. J., Appl. Phys. Lett. 51, 1509 (1987).Google Scholar
[8] Moutonnet, D., L'Haridon, H., Favennec, P. N., Salvi, M., Gauneau, M., Arnaud d'Avitaya, F., and Chroboczek, J., Mat. Sci. and Eng. B4, 75 (1989).Google Scholar
[9] Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27, L2207 (1988).CrossRefGoogle Scholar
[10] DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A., and Brorson, S. D., J. Appl. Phys. 56, 401 (1984).CrossRefGoogle Scholar
[11] Boulitrop, F., Chenevas-Paule, A., and Dunstan, D. J., Solid State Comm. 48, 181 (1983).Google Scholar
[12] Depinna, S. P., Homewood, K., Cavenett, B. C., Austin, I. G., Searle, T. M., Willeke, G., and Kinmond, S., Phil. Mag. B 47, L57 (1983).CrossRefGoogle Scholar
[13] Miller, R. D. and Michl, J., Chem. Rev. 89, 1359 (1989).CrossRefGoogle Scholar
[14] Harrah, L. A. and Zeigler, J. M., Macromolecules 20, 601 (1987).Google Scholar
[15] Furukawa, K., Fujino, M., and Matsumoto, N., Macromolecules 23, 3423 (1990).CrossRefGoogle Scholar
[16] Wilson, W. L. and Wiedman, T. W., J. Phys. Chem 95, 4568 (1991).Google Scholar
[17] Wolford, D. J., Reimer, J. A., Scott, B. A., Appl. Phys. Lett. 42, 369 (1983).Google Scholar
[18] Matsumoto, N., Furukawa, S., and Takeda, K., Solid State Comm. 53, 881 (1985).CrossRefGoogle Scholar
[19] Street, R. A., in Hydrogenattd Amorphous Silicon, edited by Pankove, J. I., Vol. 21B of Semiconductors and Semimetals (Academic, Orlando, 1984), p. 197 CrossRefGoogle Scholar
[20] Lim, K. S., Konagai, M., and Takahashi, K., Jpn. J. Appl. Phys. 21, L437 (1982).Google Scholar
[21] Wilson, B. A., Phys. Rev. B 23, 3102 (1981).Google Scholar
[22] Street, R. A. and Knights, J. C., Phil. Mag. B 42, 551 (1980).Google Scholar
[23] Sigei, G. H., Friebele, E. J., Ginther, R. J., and Griscom, D. L., IEEE Trans. Nuc. Science 21, 56 (1974).Google Scholar
[24] Itoh, C., Tanimura, K., and Itoh, N., J. Phys. C 21, 4693 (1988).Google Scholar
[25] Stathis, J. H. and Kastner, M. A., Phys. Rev. B 35, 2972 (1987).Google Scholar
[26] Gee, C. M. and Kastner, M., Phys. Rev. Lett. 42, 1765 (1979).Google Scholar
[27] Murray, C. A. and Greytak, T. J., Phys. Rev. B 20, 3368 (1979).Google Scholar
[28] Pickering, C, Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., J. Phys. C 17, 6535 (1984).Google Scholar
[29] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
[30] Fathauer, R. W., George, T., Ksendzov, A., and Vasquez, R. P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
[31] Wöhler, F., Lieb. Ann. 127, 257 (1863).Google Scholar
[32] Kautsky, H., Z. Anorg. Chemie 117, 209 (1921).CrossRefGoogle Scholar
[33] Hengge, E., Ang. Chemie 74, 501 (1962).Google Scholar
[34] Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).Google Scholar
[35] Schmid, U., Christensen, N. E., and Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).Google Scholar
[36] Wight, D. R., J. Phys. D 10, 431 (1977).Google Scholar
[37] Kautsky, H. and Herzberg, G., Z. anorg. Chemie 139, 135 (1924).Google Scholar
[38] Uhlir, A., Bell System Tech. J. 35, 333 (1956).Google Scholar
[39] Brus, L. E., J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
[40] Campbell, I. H. and Fauchet, P. M., Solid State Comm. 58, 739 (1986).Google Scholar
[41] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Comm. 81, 307 1992,Google Scholar
Fuchs, H. D., Brandt, M. S., Stutzmann, M., and Weber, J., MRS Proc. 256 (1992), in print, and references therein.Google Scholar
[42] Stutzmann, M., Weber, J., Brandt, M. S., Fuchs, H. D., Rosenbauer, M., Deak, P., Höpner, A., and Breitschwerdt, A., Adv. Solid State Physics 32 (Vieweg, Braunschweig, 1992), in print.Google Scholar
[43] Weiss, A., Beil, G., and Meyer, H., Z. Naturforsch. 34b, 25 (1979).Google Scholar
[44] Morar, J. F. and Wittmer, M., Phys. Rev. B 37, 2618 (1988).CrossRefGoogle Scholar