Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T17:47:15.380Z Has data issue: false hasContentIssue false

Wide Bandgap Materials for Semiconductor Spintronics

Published online by Cambridge University Press:  01 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
G. T. Thaler
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
R. Frazier
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
D. P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
J. Kelly
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
R. Rairigh
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
A. F. Hebard
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
Y. D. Park
Affiliation:
Center for Strongly Correlated Materials Research, Seoul,151–747, Korea
J. M. Zavada
Affiliation:
US Army Research Office, Research Triangle Park, NC 27709, USA
Get access

Abstract

Existing semiconductor electronic and photonic devices utilize the charge on electrons and holes in order to perform their specific functionality such as signal processing or light emission. The relatively new field of semiconductor spintronics seeks, in addition, to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. The ability to control of spin injection, transport and detection leads to the potential for new classes of ultra-low power, high speed memory, logic and photonic devices. The utility of such devices depends on the availability of materials with practical (>300K) magnetic ordering temperatures. In this paper, we summarize recent progress in dilute magnetic semiconductors such as (Ga,Mn)N, (Ga,Mn)P and (Zn,Mn)O exhibiting room temperature ferromagnetism, the origins of the magnetism and its potential applications in novel devices such as spin-polarized light emitters and spin field effect transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
2. Awschalom, D. D., Loss, D., and Samarth, N., Editors, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).Google Scholar
3. Ball, P., Nature 404, 918 (2000).Google Scholar
4. Awschalom, D. D. and Kikkawa, J. M., Phys. Today 52, 33 (1999);Google Scholar
Awschalom, D. D., Flatté, M. E., and Samarth, N., Sci. Am. 286, 67 (2002).Google Scholar
5. von Molnar, S. and Read, D., J. Mag. Mag. Mater. 242–245 13(2002).Google Scholar
6. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodorpoulou, N., Hebard, A. F., Park, Y.D., Ren, F., Kim, J. and Boatner, L.A., J. Appl. Phys. 93 1(2003).Google Scholar
7. Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A. and Budai, J.D., Mat. Sci. Eng. R 40 137(2003)Google Scholar
8. Baibich, M. et al., Phys. Rev. Lett. 61, 2472 (1988);Google Scholar
Barnas, J., Fuss, A., Camley, R., Grunberg, P., Zinn, W., Phys. Rev. B42, 8110 (1990).Google Scholar
9. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).Google Scholar
10. Burkard, G., Loss, D., and DiVincenzo, D. P., Phys. Rev. B 59, 2070 (1999).Google Scholar
11. Semiconductors and Semimetals, Vol. 25: Dilute Magnetic Semiconductors. Series Editors: Willardson, R. K. and Beer, A. C.. Volume Editors: Furdyna, J. K. and Kossut, J. (Academic Press, Boston, 1988);Google Scholar
Furdyna, J. K., J. Appl. Phys., 64, R29 (1988);Google Scholar
Jain, M., Editor, Diluted Magnetic Semiconductors (World Scientific, Singapore, 1991).Google Scholar
12. Ohno, H., Science, 281, 951 (1988), and references therein.Google Scholar
13. Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999);Google Scholar
Beschoten, B., Crowell, P. A., Malajovich, I., Awschalom, D. D., Matsukura, F., Shen, A., and Ohno, H., Phys. Rev. Lett. 83, 3073 (1999).Google Scholar
14. Ohno, H., et al., Nature 408, 944 (2000).Google Scholar
15. Gopalan, S. and Cottam, M. G., Phys. Rev. B 42, 10311 (1990).Google Scholar
16. Haas, C., Crit. Rev. Solid State Sci. 1, 47 (1970).Google Scholar
17. Suski, T., Igalson, J., and Story, T., J. Magn. Magn. Mater. 66, 325 (1987).Google Scholar
18. Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., Merled'Aubigne, Y., Phys. Rev. Lett. 79, 511 (1997);Google Scholar
Kossacki, P., Ferrand, D., Arnoult, A., Cibert, J., Tatarenko, S., Wasiela, A., Merled'Aubigne, Y., Staihli, J. -L., Ganiere, J. -D., Bardyszewski, W., Swiatek, K., Sawicki, M., Wrobel, J., and Dietl, T., Physica E 6, 709 (2000).Google Scholar
19. Sato, K., Medvedkin, G. A., Nishi, T., Hasegawa, Y., Misawa, R., Hirose, K., and Ishibashi, T., J. Appl. Phys. 89, 7027 (2001).Google Scholar
20. Overberg, M. E., Gila, B. P., Thaler, G. T., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., Arnason, S. B., Hebard, A. F., Chu, S. N. G., Wilson, R. G., Zavada, J. M., Park, Y. D., J. Vac. Sci. Technol. B 20, 969 (2002).Google Scholar
21. Dietl, T., Ohno, H., Matsukura, F., Cubert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
22. Dietl, T., Haury, A., and Merled'Aubigne, Y., Phys. Rev. B 55, R3347 (1997).Google Scholar
23. 7. Reed, M.L., El-Masry, N.A., Stadelmaier, H., Ritums, M.E., Reed, N.J., Parker, C.A., Roberts, J.C., and Bedair, S.M., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
24. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Appl. Phys. Lett. 78, 3475 (2001).Google Scholar
25. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. and Hori, H., J. Cryst. Growth 237a239 1358 (2002);Google Scholar
Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K. and Hori, H., J. Appl. Phys. 91 7911(2002).Google Scholar
26. Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J. and Ren, F., Appl. Phys. Lett. 80 3964 (2002).Google Scholar
27. Park, , Lee, H.-J., Cho, Y.C., Jeong, S,-Y., Cho, C.R. and Cho, S., Appl. Phys. Lett. 80, 4187 (2002).Google Scholar
28. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).Google Scholar
29. Overberg, M.E., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N. A., McCarthy, K.T., Hebard, A.F., Appl. Phys. Lett. 79, 1312 (2001).Google Scholar
30. Kim, K.H., Lee, K.J., Kim, D.J., Kim, H.J., Ihm, Y.E., Djayaprawira, D., Takahashi, M., Kim, C.S., Kim, C.G. and Yoo, S.H., Appl. Phys. Lett. 82 1775(2003).Google Scholar
31. Dhar, S., Brandt, O., Trampert, A., Daweriz, L., Friendland, K.J., Ploog, K.H., Keller, J., Beschoten, B. and Guntherodt, G., Appl. Phys. Lett. 82 2077(2003).Google Scholar
32. Jain, M., Kronik, L., Chelikowsky, J. R., and Godlevsky, V. V., Phys. Rev. B64, 245205 (2001).Google Scholar
33. Kronik, L., Jain, M., and Chelikowsky, J. R., Phys. Rev. B66, R041203 (2002).Google Scholar
34. Soo, Y.L., Kioseouglou, G.., Kim, S., Huang, S., Kaa, Y.H., Kubarawa, S., Owa, S., Kondo, T. and Munekata, H., Appl. Phys. Lett. 79, 3926 (2001);Google Scholar
Sato, M., Tanida, H., Kato, K., Sasaki, T., Yamamoto, Y., Sonoda, S., Shimiyu, S. and Hori, H., J. Jap. Appl. Phys. 41 4513(2002).Google Scholar
35. Kulatov, E., Phys. Rev. B 66 045203(2002).Google Scholar
36. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).Google Scholar
37. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).Google Scholar
38. Fukumura, T., Jin, Z., Kawasaki, M., Shono, T., Hasegawa, T., Koshikara, S., Koshihara, S. and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).Google Scholar
39. Yang, S.G., Pakhomov, A.B., Hung, S.T. and Wong, C.Y., Appl. Phys. Lett. 81, 2418 (2002).Google Scholar
40. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Phys. Rev. Lett. 89 107203–1(2002).Google Scholar
41. Overberg, M.E., Gila, B.P., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N., McCarthy, K.T., Arnason, S.B., Hebard, A.F., Chu, S.N.G., Wilson, R.G., Zavada, J.M., and Park, Y.D., J. Vac. Sci. Technol. B 20 969 (2002).Google Scholar
42. Cho, S.., Choi, S., Cha, G.B., Hong, S.C., Kim, Y., Zhao, Y.-J., Freeman, A.J., Ketterson, J.B., Kim, B.J., Kim, Y.C. and Choi, B.C., Phys. Rev. Lett. 88 257203–1 (2002).Google Scholar
43. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).Google Scholar
44. Choi, S., Cha, G.B., Hong, S.C., Cho, S., Kim, Y., Ketterson, J.B., Jeong, S.-Y. and Yi, G.C., Solid-State Commun. 122, 165 (2002).Google Scholar
45. Pearton, S.J., Overberg, , Abernathy, , Theodoropoulou, C.R., N.A., , Hebard, A.F., Chu, S.N.G., Osinsky, A., Zuflyigin, V., Zhu, L.D., Polyakov, A.Y. and Wilson, R.G., J. Appl. Phys. 92 2047(2002).Google Scholar
46. Theodorpoulou, N., Hebard, A.F., Chu, S.N.G., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Zavada, J.M. and Park, Y.D., J. Vac. Sci. Technol. A20 579(2002)Google Scholar