Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T07:22:27.262Z Has data issue: false hasContentIssue false

X-ray absorption spectroscopy studies for the determination of adsorption binding modes of selenium oxoanions onto iron and manganese based nanomaterials

Published online by Cambridge University Press:  04 February 2013

Christina M. Gonzalez
Affiliation:
Department of Chemistry and Environmental Science and Engineering PhD program, The University of Texas at El Paso; 500 W University Ave., El Paso TX 79968, United States
Jason G. Parsons
Affiliation:
Department of Chemistry, The University of Texas-Pan American 1201 W University Drive, Edinburg TX 78534, United States
Jeffrey Hernandez
Affiliation:
Department of Chemistry and Environmental Science and Engineering PhD program, The University of Texas at El Paso; 500 W University Ave., El Paso TX 79968, United States
Jorge L. Gardea-Torresdey*
Affiliation:
Department of Chemistry and Environmental Science and Engineering PhD program, The University of Texas at El Paso; 500 W University Ave., El Paso TX 79968, United States Environmental Science and Engineering PhD program, The University of Texas at El Paso; 500 W University Ave., El Paso TX 79968, United States
*
Get access

Abstract

Increasing concentrations of selenium oxoanions in the environment are placing many animals at risk for reproduction failure and deformities. The understanding of binding mechanisms of selenium oxoanions to iron and manganese based oxide minerals could lead to enhanced understanding of selenium mobility in the environment. In this study, the binding mechanisms of selenium oxoanions, selenite and selenate, to non microwave-assisted and microwave-assisted synthetic Fe3O4, Mn3O4, and MnFe2O4 nanomaterials were investigated through the use of X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) spectroscopy studies revealed the oxidation state of selenite and selenate remains the same after binding occurs to all nanomaterials in pH 2, 4, or 6 environments. The binding modes of selenite and selenate were determined to be bidentate binuclear through use of Extended x-ray absorption fine structure (EXAFS) and were independent of nanomaterials, synthetic technique, and pH.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dash, S. S. and Parida, K. M., J. Colloid Interface Sci. 307, 333 (2007).CrossRefGoogle Scholar
Ippolito, J. A., Scheckel, K. G., and Barbarick, K. A., J. Colloid Interface Sci. 338, 48 (2009).CrossRefGoogle Scholar
Lopez de Arroyabe Loyo, R., Nikitenko, S. I., Scheinost, A. C., and Simonoff, M., Environ. Sci. Technol. 42, 2451 (2008).CrossRefGoogle Scholar
Peak, D., J. Colloid Interface Sci. 303, 337 (2006).CrossRefGoogle Scholar
Wijnja, H. and Schulthess, C. P., J. Colloid Interface Sci. 229, 286 (2000).CrossRefGoogle Scholar
Foster, A. L., Brown, G. E., and Parks, G. A., Geochim. Cosmochim. Acta 67, 1937 (2003).CrossRefGoogle Scholar
Hayes, K. F., Roe, A. L., Brown, G. E., Hodgson, K. O., Leckie, J. O., and Parks, G. A., Science 238, 783 (1987).CrossRefGoogle Scholar
Gonzalez, C. M., Hernandez, J., Parsons, J. G., and Gardea-Torresdey, J. L., Microchem. J. 96, 324 (2010).CrossRefGoogle Scholar
Gonzalez, C. M., Hernandez, J., Peralta-Videa, J. R., Botez, C. E., Parsons, J. G., and Gardea-Torresdey, J. L., J. Hazard. Mater. 211212, 138 (2012).CrossRefGoogle Scholar
Gonzalez, C. M., Hernandez, J., Parsons, J. G., and Gardea-Torresdey, J. L., Instrum. Sci. Techn. 39, 1, 1 (2011).CrossRefGoogle Scholar
Ressler, T., J.Synchrotron Radiat. 5, 118 (1998).10.1107/S0909049597019298CrossRefGoogle Scholar
Ankudinov, A.L., Ravel, B.J., Rehr, J.L., and Conradson, S.D., Phys. Rev. B, 58, 7565 (1998).CrossRefGoogle Scholar
Bazin, D., Sayers, D., Rehr, J. J., and Mottet, C., J. Phys. Chem. B 101, 5332 (1997).10.1021/jp963949+CrossRefGoogle Scholar
Christensen, C. R., Cutler, J. N., and Christensen, D. A., Can. J. Anim. Sci. 84, 171, (2004).CrossRefGoogle Scholar
Webb, S. M., Gaillard, J., Ma, L. Q., and Tu, C., Environ. Sci. Technol. 37, 745 (2003).CrossRefGoogle Scholar
Lopez De Arroyaboyo, R., Nikitenko, S. I., A. C. Environ. Sci. Technol. 42, 2451 (2008).CrossRefGoogle Scholar
Charlet, L., Scheinost, A.C., Tournassat, C., Greneche, J.M., Ge´hin, A., Ferna´ndez-Martinez, A., Coudert, S., Tisserand, D., and Brendle, J.. Geochim. Cosmochim. Acta 71, 5731 (2007).CrossRefGoogle Scholar
Waychunas, G. A., Kim, C. S. and Banfield, J.F.. J. Nanopart. Res. 7, 409 (2005.)CrossRefGoogle Scholar
Missana, T., Alonso, U., Scheinost, A.C., Granizo, N., and Garcıia-Gutierrez, M., Geochim. Cosmochim. Acta 73, 6205 (2009).CrossRefGoogle Scholar