Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.334 Render date: 2022-10-04T01:54:22.840Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

THE DOUBLE SHUFFLE RELATIONS FOR MULTIPLE EISENSTEIN SERIES

Published online by Cambridge University Press:  08 May 2017

HENRIK BACHMANN
Affiliation:
Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-Ku, Nagoya 461-8601, Japan email henrik.bachmann@math.uni-hamburg.de
KOJI TASAKA
Affiliation:
Department of Information Science and Technology, Aichi Prefectural University, 1522-3, Ibaraga basama, Nagakute-si Aichi, 480-1198, Japan email koji.tasaka@postech.ac.kr

Abstract

We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.

Type
Article
Copyright
© 2017 Foundation Nagoya Mathematical Journal  

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, H., Multiple Zeta–Werte und die Verbindung zu Modulformen durch Multiple Eisensteinreihen, Master thesis, University of Hamburg, 2012.Google Scholar
Bachmann, H. and Kühn, U., The algebra of generating functions for multiple divisor sums and applications to multiple zeta values, Ramanujan J, to appear.Google Scholar
Bouillot, O., The algebra of multitangent functions , J. Algebra 410 (2014), 148238.CrossRefGoogle Scholar
Brown, F., Mixed Tate motives over ℤ , Ann. of Math. (2) 175(2) (2012), 949976.CrossRefGoogle Scholar
Chen, K. T., Iterated path integrals , Bull. Amer. Math. Soc. (N.S.) 83 (1977), 831879.CrossRefGoogle Scholar
Gangl, H., Private communication about the unfinished work of Stephanie Belcher, 2014.Google Scholar
Gangl, H., Kaneko, M. and Zagier, D., “ Double zeta values and modular forms ”, in Automorphic Forms and Zeta Functions, Proceedings of The Conference in Memory of Tsuneo Arakawa, World Scientific, 2006, 71106.CrossRefGoogle Scholar
Goncharov, A. B., Galois symmetries of fundamental groupoids and noncommutative geometry , Duke Math. J. 128(2) (2005), 209284.CrossRefGoogle Scholar
Hoffman, M. E., Quasi-shuffle products , J. Algebraic Combin. 11(1) (2000), 4968.CrossRefGoogle Scholar
Ihara, K., Kaneko, M. and Zagier, D., Derivation and double shuffle relations for multiple zeta values , Compositio Math. 142 (2006), 307338.CrossRefGoogle Scholar
Kaneko, M., “ Double zeta values and modular forms ”, in Proceedings of the Japan–Korea Joint Seminar on Number Theory, Kuju, Japan (eds. Kim, H. K. and Taguchi, Y.) 2004.Google Scholar
Kaneko, M. and Tasaka, K., Double zeta values, double Eisenstein series, and modular forms of level 2 , Math. Ann. 357(3) (2013), 10911118.CrossRefGoogle Scholar
Kaneko, M. and Zagier, D., “ A generalised Jacobi theta function and quasimodular forms ”, in The Moduli Space of Curves, Progress in Mathematics 129 , Birkhäuser, Basel, 1995, 165172.CrossRefGoogle Scholar
Reutenauer, C., Free Lie Algebras, Oxford Science Publications, Oxford, 1993.Google Scholar
Tasaka, K., On a conjecture for representations of integers as sums of squares and double shuffle relations , Ramanujan J. 33(1) (2014), 121.CrossRefGoogle Scholar
Yuan, H. and Zhao, J., Double shuffle relations of double zeta values and double eisenstein series at level N , J. Lond. Math. Soc. (2) 92(3) (2015), 520546.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THE DOUBLE SHUFFLE RELATIONS FOR MULTIPLE EISENSTEIN SERIES
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

THE DOUBLE SHUFFLE RELATIONS FOR MULTIPLE EISENSTEIN SERIES
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

THE DOUBLE SHUFFLE RELATIONS FOR MULTIPLE EISENSTEIN SERIES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *