Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-09-04T11:37:37.449Z Has data issue: false hasContentIssue false

K3 SURFACES AND ORTHOGONAL MODULAR FORMS

Published online by Cambridge University Press:  29 August 2025

ADRIAN CLINGHER
Affiliation:
Department of Mathematics and Statistics University of Missouri–St. Louis https://ror.org/037cnag11 St. Louis, Missouri 63121 United States clinghera@umsl.edu
ANDREAS MALMENDIER*
Affiliation:
Department of Mathematics & Statistics Utah State University https://ror.org/00h6set76 Logan, Utah 84322 United States
BRANDON WILLIAMS
Affiliation:
Institute of Mathematics Heidelberg University https://ror.org/038t36y30 Heidelberg 69120, Germany bwilliams@mathi.uni-heidelberg.de

Abstract

We determine explicit generators for the ring of modular forms associated with the moduli spaces of K3 surfaces with automorphism group $(\mathbb {Z}/2\mathbb {Z})^2$ and of Picard rank 13 and higher. The K3 surfaces in question carry a canonical Jacobian elliptic fibration and the modular form generators appear as coefficients in the Weierstrass-type equations describing these fibrations.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexeev, V. and Engel, P., Compact moduli of K3 surfaces , Ann. Math. (2) 198 (2023), no. 2, 727789. MR463530310.4007/annals.2023.198.2.5CrossRefGoogle Scholar
Barth, W. P., Hulek, K., Peters, C. A. M. and Van de Ven, A., Compact complex surfaces, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4, Springer-Verlag, Berlin, 2004. MR203022510.1007/978-3-642-57739-0CrossRefGoogle Scholar
Borcherds, R., Automorphic forms with singularities on Grassmannians , Invent. Math. 132 (1998), no. 3, 491562.10.1007/s002220050232CrossRefGoogle Scholar
Braun, A. P., Kimura, Y. and Watari, T., On the classification of elliptic fibrations modulo isomorphism on K3 surfaces with large Picard number, preprint, (201312), available at 1312.4421.Google Scholar
Clingher, A., Malmendier, A. and Shaska, T., Six line configurations and string dualities , Commun. Math. Phys. 371 (2019), no. 1, 159196. MR401534310.1007/s00220-019-03372-0CrossRefGoogle Scholar
Clingher, A. and Doran, C. F., Modular invariants for lattice polarized K3 surfaces , Michigan Math. J. 55 (2007), no. 2, 355393. MR2369941 (2009a:14049) MR235559810.1307/mmj/1187646999CrossRefGoogle Scholar
Clingher, A. and Doran, C. F., On K3 surfaces with large complex structure , Adv. Math. 215 (2007), no. 2, 504539.10.1016/j.aim.2007.04.014CrossRefGoogle Scholar
Clingher, A and Doran, C. F., Note on a geometric isogeny of K3 surfaces , Int. Math. Res. Not. 16 (2011), 36573687. MR2824841 (2012f:14072)10.1093/imrn/rnq230CrossRefGoogle Scholar
Clingher, A. and Doran, C. F., Lattice polarized K3 surfaces and Siegel modular forms , Adv. Math. 231 (2012), no. 1, 172212. MR293538610.1016/j.aim.2012.05.001CrossRefGoogle Scholar
Clingher, A., Hill, T. and Malmendier, A., The duality between F-theory and the heterotic string in D=8 with two Wilson lines . Lett. Math. Phys. 110 (2020), no. 11, 30813104.10.1007/s11005-020-01323-8CrossRefGoogle Scholar
Clingher, A., Hill, T. and Malmendier, A., Jacobian elliptic fibrations on the generalized Inose quartic of Picard rank sixteen , Albanian J. Math. 17 (2023), no. 1, 1328. MR454484310.51286/albjm/1675936273CrossRefGoogle Scholar
Clingher, A. and Malmendier, A., On K3 surfaces of Picard rank 14 , Math. Nachr. 298 (2025), no. 1, 652.10.1002/mana.202200197CrossRefGoogle Scholar
Clingher, A. and Malmendier, A., On Néron-Severi lattices of Jacobian elliptic K3 surfaces , Manuscripta Math. 173 (2024), nos. 3–4, 847866. MR470475710.1007/s00229-023-01486-3CrossRefGoogle Scholar
Clingher, A., Malmendier, A. and Poon, F., On two-elementary K3 surfaces with finite automorphism group . Manuscripta Math. 176 (2025), no. 3, Paper No. 32, 37 pp.10.1007/s00229-025-01634-xCrossRefGoogle Scholar
Clingher, A., Malmendier, A. and Roulleau, X., On projective K3 surfaces $x$ with $\mathrm{Aut}(x)={\left(\mathrm{Z}/2\mathrm{Z}\right)}^2$ , preprint, 2024. available at arXiv:2305.08959. to appear in Indiana Univ. Math. J.Google Scholar
Dolgachev, I. V., Mirror symmetry for lattice polarized K3 surfaces , J. Math. Sci. 81 (1996), no. 3, 25992630. Algebraic geometry, 4. MR1420220 (97i:14024)10.1007/BF02362332CrossRefGoogle Scholar
Eichler, M. and Zagier, D., The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR78173510.1007/978-1-4684-9162-3CrossRefGoogle Scholar
Festi, D. and Veniani, D. C., Counting ellptic fibrations on K3 surfaces, preprint, arXiv:2102.09411, 2020.Google Scholar
Freitag, E. and Hermann, C. F., Some modular varieties of low dimension , Adv. Math. 152 (2000), no. 2, 203287.10.1006/aima.1998.1882CrossRefGoogle Scholar
Gritsenko, V. A., Fourier-Jacobi functions in n variables , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 9, 3244.187–188.Google Scholar
Gritsenko, V. A. and Nikulin, V. V., Automorphic forms and Lorentzian Kac-Moody algebras. II , Int. J. Math. 9 (1998), no. 2, 201275.10.1142/S0129167X98000117CrossRefGoogle Scholar
Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR183445410.1090/gsm/034CrossRefGoogle Scholar
Igusa, J.-I., Arithmetic variety of moduli for genus two , Ann. Math. 72 (1960), 612649. MR11481910.2307/1970233CrossRefGoogle Scholar
Igusa, J.-I., On Siegel modular forms of genus two , Amer. J. Math. 84 (1962), 175200. MR14164310.2307/2372812CrossRefGoogle Scholar
Igusa, J.-I., On Siegel modular forms genus two. II , Amer. J. Math. 86 (1964), 392412. MR16880510.2307/2373172CrossRefGoogle Scholar
Inose, H., “ Defining equations of singular K3 surfaces and a notion of isogeny ” in Proceedings of the International Symposium on Algebraic Geometry, (M. Nagata ed.), Kyoto University, Kyoto, 1977, 1978, pp. 495502. MR578868Google Scholar
Kloosterman, R., Classification of all Jacobian elliptic fibrations on certain K3 surfaces , J. Math. Soc. Japan 58 (2006), no. 3, 665680. MR225440510.2969/jmsj/1156342032CrossRefGoogle Scholar
Kondo, S., Algebraic K3 surfaces with finite automorphism groups , Nagoya Math. J. 116 (1989), 115. MR102996710.1017/S0027763000001653CrossRefGoogle Scholar
Kondo, S., A complex hyperbolic structure for the moduli space of curves of genus three , J. Reine Angew. Math. 525 (2000), 219232. MR178043310.1515/crll.2000.069CrossRefGoogle Scholar
Kondo, S., The moduli space of 8 points of ${P}^1$ and automorphic forms, In Algebraic Geometry, Contemp. Math. 422, American Mathematical Society, Providence RI, 2007. 89106. MR2296434Google Scholar
Kumar, A., K3 surfaces associated with curves of genus two , Int. Math. Res. Not. 6 (2008), Art. ID rnm165, 26. MR2427457 (2009d:14044)Google Scholar
Kumar, A., Elliptic fibrations on a generic Jacobian Kummer surface , J. Algebr. Geom. 23 (2014), no. 4, 599667. MR326366310.1090/S1056-3911-2014-00620-2CrossRefGoogle Scholar
Kuwata, M. and Shioda, T., “Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface” in Algebraic geometry in East Asia-Hanoi 2005, (K. Konno and V. Nguyen-Khac eds.), 2008, pp. 177215. MR240955710.2969/aspm/05010177CrossRefGoogle Scholar
Lombardo, G., Peters, C., and Schütt, M., Abelian fourfolds of Weil type and certain K3 double planes , Rend. Semin. Mat. Univ. Politec. Torino 71 (2013), nos. 3–4, 339383. MR3506391Google Scholar
Ma, S., Rationality of the moduli spaces of 2-elementary K3 surfaces , J. Algebr. Geom. 24 (2015), no. 1, 81158. MR327565510.1090/S1056-3911-2014-00622-6CrossRefGoogle Scholar
Matsumoto, K., Theta functions on the classical bounded symmetric domain of type I2,2 , Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 1, 15. MR1103969 (93b:32053)10.3792/pjaa.67.1CrossRefGoogle Scholar
Matsumoto, K., Theta functions on the bounded symmetric domain of type I2,2 and the period map of a 4- parameter family of K3 surfaces , Math. Ann. 295 (1993), no. 3, 383409. MR1204828 (94m:32049)10.1007/BF01444893CrossRefGoogle Scholar
Morrison, D. R., On K3 surfaces with large Picard number , Invent. Math. 75 (1984), no. 1, 105121. MR728142 (85j:14071)10.1007/BF01403093CrossRefGoogle Scholar
Naruki, I., On confluence of singular fibers in elliptic fibrations , Publ. Res. Inst. Math. Sci. 23 (1987), no. 2, 409431. MR89092510.2977/prims/1195176546CrossRefGoogle Scholar
Nikulin, V. V., Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections , Dokl. Akad. Nauk SSSR 248 (1979), no. 6, 13071309. MR556762Google Scholar
Nikulin, V. V., Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2- reflections . Algebro-Geom. Appl., Curr. Probl. Math. 18, 1981, 3114. MR633160Google Scholar
Nikulin, V. V., Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups gen- erated by 2-reflections. Algebrogeometric applications , J. Soviet Math. 22 (1983), no. 4, 14011475.10.1007/BF01094757CrossRefGoogle Scholar
Nikulin, V. V., K3 surfaces with a finite group of automorphisms and a Picard group of rank three . In Algebraic Geometry and its Applications, Trudy Mat. Inst. Steklov. 165 (1984), 119142.Google Scholar
Nikulin, V. V., Elliptic fibrations on K3 surfaces , Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 253267. MR316502310.1017/S0013091513000953CrossRefGoogle Scholar
Oguiso, K., On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves , J. Math. Soc. Japan 41 (1989), no. 4, 651680. MR1013073 (90j:14044)10.2969/jmsj/04140651CrossRefGoogle Scholar
Reid, M., “Canonical 3-folds” in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, (A. Beauville ed.), 1980, pp. 273310. MR605348Google Scholar
Schütt, M., Sandwich theorems for Shioda-Inose structures , Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 1, 211224. MR3087091Google Scholar
Shioda, T., Kummer sandwich theorem of certain elliptic K3 surfaces , Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 137140. MR2279280Google Scholar
van Geemen, B., “An introduction to the Hodge conjecture for abelian varieties” in Algebraic Cycles and Hodge Theory (Torino, 1993), (F. Bardelli and A. Albano eds.), 1994, pp. 233252. MR133524310.1007/978-3-540-49046-3_5CrossRefGoogle Scholar
van Geemen, B. and Sarti, A., Nikulin involutions on K3 surfaces , Math. Z. 255 (2007), no. 4, 731753. MR227453310.1007/s00209-006-0047-6CrossRefGoogle Scholar
Vinberg, E. B., Classification of 2-reflective hyperbolic lattices of rank 4 , Tr. Mosk. Mat. Obs. 68 (2007), 4476. MR2429266Google Scholar
Vinberg, E. B., Some free algebras of automorphic forms on symmetric domains of type IV , Transform. Groups 15 (2010), no. 3, 701741.10.1007/s00031-010-9107-4CrossRefGoogle Scholar
Vinberg, E. B., On some free algebras of automorphic forms , Funct. Anal. Appl. 52 (2018), no. 4, 270289.10.1007/s10688-018-0237-0CrossRefGoogle Scholar
Wang, H. and Williams, B., On some free algebras of orthogonal modular forms , Adv. Math. 373 (2020), 107332. 22. MR413046610.1016/j.aim.2020.107332CrossRefGoogle Scholar
Wang, H. and Williams, B., On weak Jacobi forms of rank two , J. Algebra 634 (2023), 722754.10.1016/j.jalgebra.2023.05.016CrossRefGoogle Scholar
Wang, H. and Williams, B., Simple lattices and free algebras of modular forms , Adv. Math. 413 (2023), Paper No. 108835. 5110.1016/j.aim.2022.108835CrossRefGoogle Scholar
Wang, H. and Williams, B., Modular forms with poles on hyperplane arrangements , Algebr. Geom. 11 (2024), no. 4, 506568.10.14231/AG-2024-016CrossRefGoogle Scholar
Williams, B., Graded rings of paramodular forms of levels 5 and 7 , J. Number Theory 209 (2020), 483515.10.1016/j.jnt.2019.08.009CrossRefGoogle Scholar
Woitalla, M., Modular forms for the A1-tower , Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 2, 297316. MR388332510.1007/s12188-018-0197-6CrossRefGoogle Scholar