Skip to main content Accessibility help
×
Home

ARITHMETIC STRUCTURES FOR DIFFERENTIAL OPERATORS ON FORMAL SCHEMES

  • CHRISTINE HUYGHE (a1), TOBIAS SCHMIDT (a2) and MATTHIAS STRAUCH (a3)

Abstract

Let $\mathfrak{o}$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ and $\mathfrak{X}_{0}$ a smooth formal $\mathfrak{o}$ -scheme. Let $\mathfrak{X}\rightarrow \mathfrak{X}_{0}$ be an admissible blow-up. In the first part, we introduce sheaves of differential operators $\mathscr{D}_{\mathfrak{X},k}^{\dagger }$ on $\mathfrak{X}$ , for every sufficiently large positive integer $k$ , generalizing Berthelot’s arithmetic differential operators on the smooth formal scheme $\mathfrak{X}_{0}$ . The coherence of these sheaves and several other basic properties are proven. In the second part, we study the projective limit sheaf $\mathscr{D}_{\mathfrak{X},\infty }=\mathop{\varprojlim }\nolimits_{k}\mathscr{D}_{\mathfrak{X},k}^{\dagger }$ and introduce its abelian category of coadmissible modules. The inductive limit of the sheaves $\mathscr{D}_{\mathfrak{X},\infty }$ , over all admissible blow-ups $\mathfrak{X}$ , is a sheaf $\mathscr{D}_{\langle \mathfrak{X}_{0}\rangle }$ on the Zariski–Riemann space of $\mathfrak{X}_{0}$ , which gives rise to an abelian category of coadmissible modules. Analogues of Theorems A and B are shown to hold in each of these settings, that is, for $\mathscr{D}_{\mathfrak{X},k}^{\dagger }$ , $\mathscr{D}_{\mathfrak{X},\infty }$ , and $\mathscr{D}_{\langle \mathfrak{X}_{0}\rangle }$ .

Copyright

References

Hide All
[1]Ardakov, K., 𝓓̂-modules on rigid analytic spaces, Proc. Int. Congress of Mathematicians 2014 Seoul III (2014), 19.
[2]Ardakov, K., Bode, A. and Wadsley, S. J., 𝓓̂-modules on rigid analytic spaces III. Preprint 2019, arXiv:1904.13280.
[3]Ardakov, K. and Wadsley, S., 𝓓̂-modules on rigid analytic spaces II: Kashiwara’s equivalence, J. Algebraic Geom. 27 (2018), 647701.
[4]Ardakov, K. and Wadsley, S., 𝓓̂-modules on rigid analytic spaces I, J. Reine Angew. Math. 747 (2019), 221276.
[5]Ardakov, K. and Wadsley, S., On irreducible representations of compact p-adic analytic groups, Ann. of Math. (2) 178(2) (2013), 453557.
[6]Berthelot, P., “Cohomologie rigide et théorie des 𝓓-modules”, in p-adic Analysis (Trento, 1989), Lecture Notes in Mathematics 1454, Springer, Berlin, 1990, 80124.
[7]Berthelot, P., D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. ENS 29 (1996), 185272.
[8]Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis, Springer, Berlin, 1984.
[9]Bosch, S., Lectures on Formal and Rigid Geometry, Lecture Notes in Math. 2105, Springer, Berlin, 2014.
[10]Chiarellotto, B. and Le Stum, B., Pentes en cohomologie rigide et F-isocristaux unipotents, Manuscripta Math. 100(4) (1999), 455468.
[11]Emerton, M., Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math. Soc. 248(1175) (2017), iv+158.
[12]Fujiwara, K. and Kato, F., Foundations of Rigid Geometry. I, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2018.
[13]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (32) (1967), 361.
[14]Hartshorne, R., On the De Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. (45) (1975), 599.
[15]Hartshorne, R., Residues and Duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Math. 20, Springer, Berlin–New York, 1966.
[16]Hotta, R., Takeuchi, K. and Tanisaki, T., D-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics 236, Birkhäuser Boston Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi.
[17]Huyghe, C., 𝒟sp†-affinité de l’espace projectif, Compos. Math. 108(3) (1997), 277318; With an appendix by P. Berthelot.
[18]Huyghe, C., Patel, D., Schmidt, T. and Strauch, M., 𝓓 -affinity of formal models of flag varieties, Math. Res. Lett. (to appear) available at:https://perso.univ-rennes1.fr/tobias.schmidt/model_revised_ff_final.pdf.
[19]Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, Oxford, 2002, Translated from the French by Reinie Erné, Oxford Science Publications.
[20]Noot-Huyghe, C., Finitude de la dimension homologique d’algèbres d’opérateurs différentiels faiblement complètes et à coefficients surconvergents, J. Algebra 307(2) (2007), 499540.
[21]Noot-Huyghe, C., Un théorème de Beilinson–Bernstein pour les 𝒟-modules arithmétiques, Bull. Soc. Math. France 137(2) (2009), 159183.
[22]Patel, D., Schmidt, T. and Strauch, M., Integral models of ℙ1 and analytic distribution algebras for GL(2), Münster J. Math. 7 (2014), 241271.
[23]Patel, D., Schmidt, T. and Strauch, M., Locally analytic representations of GL(2, L) via semistable models of ℙ1, J. Inst. Math. Jussieu 18(2) (2019), 125187.
[24]Schneider, P. and Teitelbaum, J., Algebras of p-adic distributions and admissible representations, Invent. Math. 153(1) (2003), 145196.
[25]Shiho, A., Notes on generalizations of local Ogus–Vologodsky correspondence, J. Math. Sci. Univ. Tokyo 22(3) (2015), 793875.
[26]The Stacks Project Authors, Stacks Project. http://stacks.math.columbia.edu, 2017.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

ARITHMETIC STRUCTURES FOR DIFFERENTIAL OPERATORS ON FORMAL SCHEMES

  • CHRISTINE HUYGHE (a1), TOBIAS SCHMIDT (a2) and MATTHIAS STRAUCH (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed