Skip to main content Accessibility help




We will establish a nearby and vanishing cycle formalism for the arithmetic $\mathscr{D}$ -module theory following Beilinson’s philosophy. As an application, we define smooth objects in the framework of arithmetic $\mathscr{D}$ -modules whose category is equivalent to the category of overconvergent isocrystals.



Hide All
[A1] Abe, T., Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic 𝒟-modules , Rend. Sem. Math. Univ. Padova 131 (2014), 89149.
[A2] Abe, T., Langlands correspondence for isocrystals and existence of crystalline companion for curves , J. Amer. Math. Soc. 31 (2018), 9211057.
[AC] Abe, T. and Caro, D., Theory of weights in p-adic cohomology , Amer. J. Math. 140(4) (2018), 879975.
[AC2] Abe, T. and Caro, D., On Beilinson’s equivalence for p-adic cohomology , Selecta Math. 24 (2018.), 591608.
[AM] Abe, T. and Marmora, A., On p-adic product formula for epsilon factors , J. Inst. Math. Jussieu 14 (2015), 275377.
[Bei] Beilinson, A., How to Glue Perverse Sheaves, Lecture Notes in Math. 1289 , 4251. Springer, Berlin, 1987.
[BBD] Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers , Astérisque 100 (1982).
[Ber] Berthelot, P., Géométrie rigide et cohomologie des variétés algébriques de caractéristique p , Mém. Soc. Math. Fr. 23 (1986), 732.
[C1] Caro, D., Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents , Math. Ann. 349 (2011), 747805.
[C2] Caro, D., Sur la préservation de la surconvergence par l’image directe d’un morphisme propre et lisse , Ann. E.N.S. 48 (2015), 131169.
[C3] Caro, D., Sur la préservation de la cohérence par image inverse extraordinaire d’une immersion fermée , Nagoya J. Math.
[CV] Caro, D. and Vauclair, D., Logarithmic $p$ -bases and arithmetical differential modules, preprint, 2015, arXiv:1511.07797.
[CM] Christol, G. and Mebkhout, Z., Sur le théorème de l’indice des équations différentielles p-adiques IV , Invent. Math. 143 (2001), 629672.
[Cr1] Crew, R., Arithmetic 𝓓-modules on the unit disk , Compos. Math. 148 (2012), 227268.
[Cr2] Crew, R., Arithmetic ${\mathcal{D}}$ -modules on adic formal schemes, preprint, 2017, arXiv:1701.01324.
[D] Deligne, P., “ Théorèmes de finitude en cohomologie -adique ”, Cohomologie Etale, Lecture Notes in Mathematics 569 , Springer, Berlin, Heidelberg, 1977.
[E] Ekedahl, T., “ On the adic formalism ”, in The Grothendieck Festschrift, Modern Birkhäuser Classics, (eds. Cartier, P., Katz, N. M., Manin, Y. I., Illusie, L., Laumon, G. and Ribet, K. A.) Birkhäuser, Boston, 2007, 197218.
[K1] Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, I: Unipotence and logarithmic extensions , Compos. Math. 143 (2007), 11641212.
[K2] Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations , Compos. Math. 147 (2011), 467523.
[LP] Lazda, C. and Pal, A., Rigid Cohomology over Laurent Series Fields, Algebra and Applications 21 , Springer, 2016.
[S] Shiho, A., Cut-by-curves criterion for the log extendability of overconvergent isocrystals , Math. Z. 269 (2011), 5982.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed