Skip to main content Accessibility help
×
Home

CR-HARMONIC MAPS

  • GAUTIER DIETRICH (a1)

Abstract

We develop the notion of renormalized energy in Cauchy–Riemann (CR) geometry for maps from a strictly pseudoconvex pseudo-Hermitian manifold to a Riemannian manifold. This energy is a CR invariant functional whose critical points, which we call CR-harmonic maps, satisfy a CR covariant partial differential equation. The corresponding operator coincides on functions with the CR Paneitz operator.

Copyright

Footnotes

Hide All

The author was supported in part by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (project CCEM).

Footnotes

References

Hide All
[Bér13]Bérard, V., Les applications conforme-harmoniques, Canad. J. Math. 65 (2013), 266298.
[Biq00]Biquard, O., Métriques d’Einstein asymptotiquement symétriques, Astérisque 265, Société Mathématique de France, Paris, 2000.
[BH05]Biquard, O. and Herzlich, M., A Burns–Epstein invariant for ACHE 4-manifolds, Duke Math. J. 126 (2005), 53100.
[CY13]Case, J. S. and Yang, P., A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8(3) (2013), 285322.
[CY80]Cheng, S.-Y. and Yau, S.-T., On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math. 33 (1980), 507544.
[CDRY19]Chong, T., Dong, Y., Ren, Y. and Yang, G., On harmonic and pseudoharmonic maps from pseudo-hermitian manifolds, Nagoya Math. J. 234 (2019), 170210.
[DT06]Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics 246, Birkhäuser, Boston, 2006.
[EMM91]Epstein, C. L., Melrose, R. B. and Mendoza, G. A., Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), 1106.
[Far86]Farris, F., An intrinsic construction of Fefferman’s CR metric, Pacific J. Math. 123(1) (1986), 3345.
[Fef76]Fefferman, C. L., Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), 395416.
[FG85]Fefferman, C. and Graham, C. R., “Conformal invariants”, in The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque, hors-série, Société mathématique de France, Paris, 1985, 95116.
[GH05]Graham, C. R. and Hirachi, K., “The ambient obstruction tensor and Q-curvature”, in AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lectures in Mathematics and Theoretical Physics 8, (ed. Biquard, O.) European Mathematical Society, Université Louis Pasteur, Strasbourg, 2005, 5971.
[GJMS92]Graham, C. R., Jenne, R., Mason, L. J. and Sparling, G. A. J., Conformally invariant powers of the Laplacian, I: Existence, J. Lond. Math. Soc. (2) 46(3) (1992), 557565.
[GS17]Gursky, M. J. and Székelyhidi, G., A local existence result for Poincaré-Einstein metrics, preprint, 2017, arXiv:1712.04017.
[Her07]Herzlich, M., A remark on renormalized volume and Euler characteristic for ACHE 4-manifolds, Differential Geom. Appl. 25(1) (2007), 7891.
[Her09]Herzlich, M., The canonical Cartan bundle and connection in CR geometry, Math. Proc. Cambridge Philos. Soc. 146 (2009), 415434.
[JL89]Jerison, D. and Lee, J. M., Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geometry 29 (1989), 303343.
[Lee86]Lee, J. M., The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296(1) (1986), 411429.
[LM82]Lee, J. and Melrose, R., Boundary behaviour of the complex Monge–Ampère equation, Acta Math. 148 (1982), 159192.
[Mar18]Marugame, T., Self-dual Einstein ACH metric and CR GJMS operators in dimension three, preprint, 2018, arXiv:1802.01264.
[Mat14]Matsumoto, Y., Asymptotics of ACH-Einstein metrics, J. Geom. Anal. 24 (2014), 21352185.
[Mil79]Milnor, T. K., Harmonically immersed surfaces, J. Differential Geometry 14 (1979), 205214.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

CR-HARMONIC MAPS

  • GAUTIER DIETRICH (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed