Skip to main content
×
×
Home

THE DOUBLE SHUFFLE RELATIONS FOR MULTIPLE EISENSTEIN SERIES

  • HENRIK BACHMANN (a1) and KOJI TASAKA (a2)
Abstract

We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.

Copyright
References
Hide All
[1] Bachmann, H., Multiple Zeta–Werte und die Verbindung zu Modulformen durch Multiple Eisensteinreihen, Master thesis, University of Hamburg, 2012.
[2] Bachmann, H. and Kühn, U., The algebra of generating functions for multiple divisor sums and applications to multiple zeta values, Ramanujan J, to appear.
[3] Bouillot, O., The algebra of multitangent functions , J. Algebra 410 (2014), 148238.
[4] Brown, F., Mixed Tate motives over ℤ , Ann. of Math. (2) 175(2) (2012), 949976.
[5] Chen, K. T., Iterated path integrals , Bull. Amer. Math. Soc. (N.S.) 83 (1977), 831879.
[6] Gangl, H., Private communication about the unfinished work of Stephanie Belcher, 2014.
[7] Gangl, H., Kaneko, M. and Zagier, D., “ Double zeta values and modular forms ”, in Automorphic Forms and Zeta Functions, Proceedings of The Conference in Memory of Tsuneo Arakawa, World Scientific, 2006, 71106.
[8] Goncharov, A. B., Galois symmetries of fundamental groupoids and noncommutative geometry , Duke Math. J. 128(2) (2005), 209284.
[9] Hoffman, M. E., Quasi-shuffle products , J. Algebraic Combin. 11(1) (2000), 4968.
[10] Ihara, K., Kaneko, M. and Zagier, D., Derivation and double shuffle relations for multiple zeta values , Compositio Math. 142 (2006), 307338.
[11] Kaneko, M., “ Double zeta values and modular forms ”, in Proceedings of the Japan–Korea Joint Seminar on Number Theory, Kuju, Japan (eds. Kim, H. K. and Taguchi, Y.) 2004.
[12] Kaneko, M. and Tasaka, K., Double zeta values, double Eisenstein series, and modular forms of level 2 , Math. Ann. 357(3) (2013), 10911118.
[13] Kaneko, M. and Zagier, D., “ A generalised Jacobi theta function and quasimodular forms ”, in The Moduli Space of Curves, Progress in Mathematics 129 , Birkhäuser, Basel, 1995, 165172.
[14] Reutenauer, C., Free Lie Algebras, Oxford Science Publications, Oxford, 1993.
[15] Tasaka, K., On a conjecture for representations of integers as sums of squares and double shuffle relations , Ramanujan J. 33(1) (2014), 121.
[16] Yuan, H. and Zhao, J., Double shuffle relations of double zeta values and double eisenstein series at level N , J. Lond. Math. Soc. (2) 92(3) (2015), 520546.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed