Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.504 Render date: 2022-09-30T03:15:31.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Finite symplectic actions on the K3 lattice

Published online by Cambridge University Press:  11 January 2016

Kenji Hashimoto*
Affiliation:
Korea Institute for Advanced Study, Seoul 130-722, Korea, hashimoto@kias.re.kr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study finite symplectic actions on K3 surfaces X, that is, actions of finite groups G on X which act on H2,0(X) trivially. We show that the action on the K3 lattice H2(X, ℤ) induced by a symplectic action of G on X depends only on G up to isomorphism, except for five groups.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2012

References

[1] Barth, W. P., Hulek, K., Peters, C., and de Ven, A. Van, Compact Complex Surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 2004.Google Scholar
[2] Besche, H. U., Eick, B., and O’Brien, E. A., A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), 623644.CrossRefGoogle Scholar
[3] Burns, D. and Rapoport, M., On the Torelli problem for Kählerian K-3 surfaces, Ann. Sci. Ec. Norm. Supér. (4) 8 (1975), 235273.CrossRefGoogle Scholar
[4] Cassels, J. W. S., Rational Quadratic Forms, Lond. Math. Soc. Monogr. Ser. 13, Academic Press, New York, 1978.Google Scholar
[5] Conway, J. H. and Sloane, N. J., Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren Math. Wiss. 290, Springer, New York, 1999.Google Scholar
[6] Earnest, A. G. and Hsia, J. S., Spinor norms of local integral rotations, II, Pacific J. Math. 61 (1975), 7186.CrossRefGoogle Scholar
[7] Garbagnati, A., Symplectic automorphisms on Kummer surfaces, Geom. Dedicata 145 (2010), 219232.CrossRefGoogle Scholar
[8] Garbagnati, A., The dihedral group D5 as group of symplectic automorphisms on K3 surfaces, preprint, arXiv:0812.4518 [math.AG] Google Scholar
[9] Garbagnati, A., Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms, preprint, arXiv:0904.1519 [math.AG] Google Scholar
[10] Garbagnati, A. and Sarti, A., Symplectic automorphisms of prime order on K3 surfaces, J. Algebra 318 (2007), 323350.CrossRefGoogle Scholar
[11] Garbagnati, A. and Sarti, A., Elliptic fibrations and symplectic automorphisms on K3 surfaces, Comm. Algebra 37 (2009), 36013631.CrossRefGoogle Scholar
[12] GAP Group, GAP—Groups, Algorithms, and Programming, version 4.4.12, 2008, http://www.gap-system.org Google Scholar
[13] Hashimoto, K., Period map of a certain K3 family with an S5-action, with an appendix by Terasoma, T., Reine, J. Angew. Math. 652 (2011), 165.Google Scholar
[14] Keum, J., Oguiso, K., and Zhang, D.-Q., The alternating group of degree 6 in the geometry of the Leech lattice and K3 surfaces, Proc. Lond. Math. Soc. (3) 90 (2005), 371394.CrossRefGoogle Scholar
[15] Kondō, S., Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces, with an appendix by S. Mukai, Duke Math. J. 92 (1998), 593603.CrossRefGoogle Scholar
[16] Kondō, S., The maximum order of finite groups of automorphisms of K3 surfaces, Amer. J. Math. 121 (1999), 12451252.CrossRefGoogle Scholar
[17] Maxima.sourceforge.net, Maxima, a Computer Algebra System, version 5.17.0, 2009, http://maxima.sourceforge.net/ Google Scholar
[18] Mukai, S., Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), 183221.CrossRefGoogle Scholar
[19] Nikulin, V. V., Finite groups of automorphisms of Kählerian surfaces of type K3 (in Russian), Uspekhi Mat. Nauk 31 (1976), 223224.Google Scholar
[20] Nikulin, V. V., Finite groups of Kählerian surfaces of type K3 (English translation), Trans. Moscow Math. Soc. 38 (1980), 71137.Google Scholar
[21] Nikulin, V. V., Integral symmetric bilinear forms and some of their applications (English translation), Math. USSR Izv. 14 (1980), 103167.CrossRefGoogle Scholar
[22] Oguiso, K., A characterization of the Fermat quartic K3 surface by means of finite symmetries, Compos. Math. 141 (2005), 404424.CrossRefGoogle Scholar
[23] Oguiso, K. and Zhang, D.-Q., “The simple group of order 168 and K3 surfaces” in Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, 165184.CrossRefGoogle Scholar
[24] Pjateckiĭ-Šapiro, I. I. and Šafarevič, I. R., Torelli’s theorem for algebraic surfaces of type K3 (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530572.Google Scholar
[25] Schiemann, A., The Brandt-Intrau-Schiemann table of even ternary quadratic forms, http://www.research.att.com/njas/lattices/Brandt2.html Google Scholar
[26] Serre, J.-P., Cours d’arithmétique, Presses Univ. France, Paris, 1970.Google Scholar
[27] Shioda, T. and Inose, H., “On singular K3 surfaces” in Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 119136.CrossRefGoogle Scholar
[28] Whitcher, U., Symplectic automorphisms and the Picard group of a K3 surface, preprint, arXiv:0902.0601 [math.AG] Google Scholar
[29] Xiao, G., Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996), 7388.CrossRefGoogle Scholar
[30] Zhang, D.-Q., The alternating groups and K3 surfaces, J. Pure Appl. Algebra 207 (2006), 119138.CrossRefGoogle Scholar
You have Access
25
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Finite symplectic actions on the K3 lattice
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Finite symplectic actions on the K3 lattice
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Finite symplectic actions on the K3 lattice
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *