Skip to main content
×
×
Home

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

  • GEORGE E. ANDREWS (a1), BRUCE C. BERNDT (a2), SONG HENG CHAN (a3), SUN KIM (a4) and AMITA MALIK (a5)...
Abstract

In 2005, using a famous lemma of Atkin and Swinnerton-Dyer (Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84–106), Yesilyurt (Four identities related to third order mock theta functions in Ramanujan’s lost notebook, Adv. Math. 190 (2005), 278–299) proved four identities for third order mock theta functions found on pages 2 and 17 in Ramanujan’s lost notebook. The primary purpose of this paper is to offer new proofs in the spirit of what Ramanujan might have given in the hope that a better understanding of the identities might be gained. Third order mock theta functions are intimately connected with ranks of partitions. We prove new dissections for two rank generating functions, which are keys to our proof of the fourth, and the most difficult, of Ramanujan’s identities. In the last section of this paper, we establish new relations for ranks arising from our dissections of rank generating functions.

Copyright
Footnotes
Hide All

The third author was partially supported by the Singapore Ministry of Education Academic Research Fund, Tier 2, project number MOE2014-T2-1-051, ARC40/14

Footnotes
References
Hide All
[1] Andrews, G. E., q-orthogonal polynomials, Rogers–Ramanujan identities, and mock theta functions , Tr. Mat. Inst. Steklova 276 (2012), 2738.
[2] Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook, Part I, Springer, New York, 2005.
[3] Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook, Part III, Springer, New York, 2012.
[4] Andrews, G. E. and Lewis, R., The ranks and cranks of partitions moduli 2, 3, and 4 , J. Number Theory 85(1) (2000), 7484.
[5] Andrews, G. E., Lewis, R. and Liu, Z.-G., An identity relating a theta function to a sum of Lambert series , Bull. Lond. Math. Soc. 33 (2001), 2531.
[6] Atkin, A. O. L. and Hussain, S. M., Some properties of partitions. II , Trans. Amer. Math. Soc. 89 (1958), 184200.
[7] Atkin, A. O. L. and Swinnerton–Dyer, H. P. F., Some properties of partitions , Proc. Lond. Math. Soc. (3) 4 (1954), 84106.
[8] Berndt, B. C., Ramanujan’s Notebooks, Part III, Springer, New York, 1991.
[9] Berndt, B. C., Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006.
[10] Chan, S. H., Generalized Lambert series identities , Proc. Lond. Math. Soc. 91(3) (2005), 598622.
[11] Chan, S. H., Congruences for Ramanujan’s 𝜙 function , Acta Arith. 153(2) (2012), 161189.
[12] Chan, S. H. and Mao, R., The rank and crank of partitions modulo 3 , Int. J. Number Theory 12(4) (2016), 10271053.
[13] Dyson, F. J., Some Guesses in the Theory of Partitions 8 , Eureka, Cambridge, 1944, 1015.
[14] Garvan, F. G., New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11 , Trans. Amer. Math. Soc. 305 (1988), 4777.
[15] Garvan, F. G., The crank of partitions mod 8, 9 and 10 , Trans. Amer. Math. Soc. 322(1) (1990), 7994.
[16] Halphen, G. H., Traité des Fonctions Elliptiques et de Leurs Applications, Vol. 1, Gauthier-Villars, Paris, 1888.
[17] Hickerson, D., A proof of the mock theta conjectures , Invent. Math. 94(3) (1998), 661677.
[18] Lewis, R., On the rank and the crank modulo 4 , Proc. Amer. Math. Soc. 112(4) (1991), 925933.
[19] Lewis, R., On the ranks of partitions modulo 9 , Bull. Lond. Math. Soc. 23(5) (1991), 417421.
[20] Lewis, R., On some relations between the rank and the crank , J. Combin. Theory Ser. A 59(1) (1992), 104110.
[21] Lewis, R., Relations between the rank and the crank modulo 9 , J. Lond. Math. Soc. (2) 45(2) (1992), 222231.
[22] Lewis, R., The ranks of partitions modulo 2, in 15th British Combinatorial Conference (Stirling, 1995), Discrete Math. 167/168, (1997), 445–449.
[23] Lewis, R., The generating functions of the rank and crank modulo 8 , Ramanujan J. 18(2) (2009), 121146.
[24] Lewis, R. and Santa-Gadea, N., On the rank and the crank modulo 4 and 8 , Trans. Amer. Math. Soc. 341(1) (1994), 449465.
[25] Mortenson, E. T., On ranks and cranks of partitions modulo 4 and 8 , J. Combin. Theory Ser. A 161 (2019), 5180.
[26] Ramanujan, S., The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
[27] Santa-Gadea, N., On the rank and the crank moduli 8, 9, and 12, Ph.D. thesis, The Pennsylvania State University, 1990, 70 pp.
[28] Santa-Gadea, N., On some relations for the rank moduli 9 and 12 , J. Number Theory 40(2) (1992), 130145.
[29] Yesilyurt, H., Four identities related to third order mock theta functions in Ramanujan’s lost notebook , Adv. Math. 190 (2005), 278299.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed