Skip to main content



To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$ . This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.

Hide All
[1] Aramova A., Herzog J. and Hibi T., Finite lattices and lexicographic Gröbner bases , European J. Combin. 21 (2000), 431439.
[2] Bruns W. and Herzog J., Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics 39 , Cambridge University Press, Cambridge, 1996, Revised edition.
[3] Bruns W., Ichim B. and Söger C., NORMALIZ. Computing normalizations of affine semigroups. Available at
[4] Ene V., Herzog J. and Mohammadi F., Monomial ideals and toric rings of Hibi type arising from a finite poset , European J. Combin. 32 (2011), 404421.
[5] Engström A. and Norén P., Ideals of graph homomorphisms , Ann. Comb. 17 (2013), 71103.
[6] Fløystad G., Greve B. M. and Herzog J., Letterplace and co-letterplace ideals of posets , J. Pure Appl. Algebra 221.5 (2017), 12181241.
[7] Goto S. and Watanabe K., On graded rings , J. Math. Soc. Japan 30 (1978), 179213.
[8] Herzog J. and Hibi T., Distributive lattices, bipartite graphs and Alexander duality , J. Algebraic Combin. 22 (2005), 289302.
[9] Herzog J. and Hibi T., Monomial Ideals, Graduate Text in Mathematics 260 , Springer, Berlin, 2011.
[10] Herzog J., Qureshi A. A. and Shikama A., Alexander duality for monomial ideals associated with isotone maps between posets , J. Algebra Appl. 15 1650089 (2016).
[11] Hibi T., “ Distributive lattices, affine semigroup rings and algebras with straightening laws ”, in Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics 11 , (eds. Nagata M. and Matsumura H.) North-Holland, Amsterdam, 1987, 93109.
[12] Hibi T. (eds), Gröbner Bases: Statistics and Software Systems, Springer, Tokyo, Japan, 2014.
[13] Hochster M., Ring of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes , Ann. Math. 96 (1972), 318337.
[14] Juhnke-Kubitzke M., Katthän L. and Madani S. S., Algebraic properties of ideals of poset homomorphisms , J. Algebraic Combin. 44(3) (2016), 757784.
[15] Ohsugi H., Herzog J. and Hibi T., Combinatorial pure subrings , Osaka J. Math. 37 (2000), 745757.
[16] Ohsugi H. and Hibi T., Quadratic initial ideals of root systems , Proc. Amer. Math. Soc. 130 (2002), 19131922.
[17] Sturmfels B., Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995.
[18] Villarreal R. H., Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics 238 , Marcel Dekker, Inc., New York, 2001.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 119 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2017 - 20th November 2017. This data will be updated every 24 hours.