Skip to main content Accessibility help




We describe the irreducible components of the jet schemes with origin in the singular locus of a two-dimensional quasi-ordinary hypersurface singularity. A weighted graph is associated with these components and with their embedding dimensions and their codimensions in the jet schemes of the ambient space. We prove that the data of this weighted graph is equivalent to the data of the topological type of the singularity. We also determine a component of the jet schemes (equivalent to a divisorial valuation on $\mathbb{A}^{3}$ ), that computes the log-canonical threshold of the singularity embedded in $\mathbb{A}^{3}$ . This provides us with pairs $X\subset \mathbb{A}^{3}$ whose log-canonical thresholds are not computed by monomial divisorial valuations. Note that for a pair $C\subset \mathbb{A}^{2}$ , where $C$ is a plane curve, the log-canonical threshold is always computed by a monomial divisorial valuation (in suitable coordinates of $\mathbb{A}^{2}$ ).



Hide All
[1] Abhyankar, S. S., On the ramification of algebraic functions , Amer. J. Math. 77 (1955), 575592.
[2] Aprodu, M. and Naie, D., Enriques diagrams and log-canonical thresholds of curves on smooth surfaces , Geom. Dedicata 146 (2010), 4366.
[3] Artal Bartolo, E., Cassou-Noguès, Pi., Luengo, I. and Melle Hernández, A., Quasi-ordinary power series and their zeta functions , Mem. Amer. Math. Soc. 178(841) (2005), 185.
[4] Artal Bartolo, E., Cassou-Noguès, Pi., Luengo, I. and Melle-Hernández, A., “ On the log-canonical threshold for germs of plane curves ”, in Singularities I, Contemp. Math. 474 , Amer. Math. Soc., Providence, RI, 2008, 114.
[5] Assi, A., Irreducibility criterion for quasi-ordinary polynomials , J. Singul. 4 (2012), 2334.
[6] Ban, C. and McEwan, L., Canonical resolution of a quasi-ordinary surface singularity , Canad. J. Math. 52(6) (2000), 11491163.
[7] Ban, C. and McEwan, L., “ Simultaneous resolution of equisingular quasi-ordinary singularities ”, in Singularities in Algebraic and Analytic Geometry (San Antonio, TX, 1999), Contemp. Math. 266 , Amer. Math. Soc., Providence, RI, 2000, 6575.
[8] Budur, N., González Pérez, P. D. and González Villa, M., Log-canonical thresholds of quasi-ordinary hypersurfaces singularities , Proc. Amer. Math. Soc. 140 (2012), 40754083.
[9] Cobo Pablos, H. and González Pérez, P. D., Geometric motivic Poincaré series of quasi-ordinary hypersurfaces , Math. Proc. Cambridge Philos. Soc. 149(01) (2010), 4974.
[10] Denef, J. and Loeser, F., Germs of arcs on singular algebraic varieties and motivic integration , Invent. Math. 135(1) (1999), 201232.
[11] Denef, J. and Loeser, F., “ Geometry on arc spaces of algebraic varieties ”, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201 , Birkhäuser, Basel, 2001, 327348.
[12] Docampo, R., Arcs on determinantal varieties , Trans. Amer. Math. Soc. 365(5) (2013), 22412269.
[13] Ein, L. and Mustaţa, M., “ Jet Schemes and Singularities ”, in Algebraic geometry-Seattle 2005, Proc. Sympos. Pure Math. 80, Part 2, Amer. Math. Soc., Providence, RI, 2009, 505546.
[14] García Barroso, E. and Gwodziewicz, J., Quasi-ordinary singularities: tree model, discriminant and irreducibility , Int. Math. Res. Not. 14 (2015), 57835805.
[15] Gau, Y.-N., Embedded Topological classification of quasi-ordinary singularities , Mem. Amer. Math. Soc. 388 (1988).
[16] González Pérez, P. D., The semigroup of a quasi-ordinary hypersurface , J. Inst. Math. Jussieu 2(3) (2003), 383399.
[17] González Pérez, P. D., Toric embedded resolutions of quasi-ordinary hypersurface singularities , Ann. Inst. Fourier 53(6) (2003), 18191881.
[18] González Pérez, P. D. and González Villa, M., Motivic Milnor fiber of a quasi-ordinary hypersurface , J. Reine Angew. Math. 687 (2014), 159205.
[19] Ishii, S., Jet schemes, arc spaces and the Nash problem , C. R. Math. Acad. Sci. Soc. R. Can. 29(1) (2007), 121.
[20] Kiyek, K. and Micus, M., “ Semigroup of a quasiordinary singularity ”, Topics in Algebra, Part 2 (Warsaw, 1988), 149156. Banach Center Publ., 26.
[21] Lejeune-Jalabert, M., Mourtada, H. and Reguera, A., Jet schemes and minimal embedded desingularization of plane branches , Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 107(1) (2013), 145157.
[22] Lipman, J., Topological invariants of quasi-ordinary singularities , Mem. Amer. Math. Soc. 74(388) (1988), 1107.
[23] Lipman, J., “ Equisingularity and simultaneous resolution of singularities ”, in Resolution of Singularities (Obergurgl, 1997), Progr. Math. 181 , Birkhäuser, Basel, 2000, 485505.
[24] Mourtada, H., Jet schemes of complex plane branches and equisingularity , Ann. Inst. Fourier 61(6) (2011), 23132336.
[25] Mourtada, H., Jet schemes of normal toric surfaces , Bull. SMF 145(fascicule 2) (2017), 237266.
[26] Mourtada, H., “ Jet schemes of rational double point surface singularities ”, in Valuation Theory in Interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, 373388.
[27] Mourtada, H., Jet schemes and minimal generating sequences of divisorial valuations in dimension two , Michigan Math. J. 66(1) (2017), 155174.
[28] Mourtada, H. and Plénat, C., Jet schemes and minimal toric embedded resolutions of rational double point singularities , Comm. Algebra 46(3) (2018), 13141332.
[29] Mustaţa, M., Singularities of pairs via jets schemes , J. Amer. Math. Soc. 15(3) (2002), 599615.
[30] Popescu-Pampu, P., On the analytical invariance of the semigroups of a quasi-ordinary hypersurface singularity , Duke Math. J. 124(1) (2004), 67104.
[31] Popescu-Pampu, P., Introduction to Jung’s method of resolution of singularities , Contemp. Math. 538 (2011), 401432.
[32] Popescu-Pampu, P., From singularities to graphs, preprint, 2018, arXiv:1808.00378.
[33] Sethuraman, B. A. and Šivic, K., Jet schemes of the commuting matrix pairs scheme , Proc. Amer. Math. Soc., 137(12) (2009), 39533967.
[34] Villamayor, O., On equiresolution and a question of Zariski , Acta Math. 185(1) (2000), 123159.
[35] Yuen, C., “ Jet schemes of determinantal varieties ”, in Algebra, Geometry and Their Interactions, Contemp. Math. 448 , Amer. Math. Soc., 2007, 261270.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed