1 Introduction
 Throughout this note, we work over  $\mathbb{C}$. Our main result is Theorem 1.3.
$\mathbb{C}$. Our main result is Theorem 1.3.
The global Torelli theorem for K3 surfaces ([Reference Pjateckii-Shapiro and ShafarevichPS71, Reference Burns and RapoportBR75], see also [Reference Barth, Hulek, Peters and Van de VenBHPV04]) says that the contravariant action
 $$\begin{eqnarray}\unicode[STIX]{x1D70C}_{2}:\text{Aut}(S)\rightarrow \text{GL}(H^{2}(S,\mathbb{Z}));\quad g\mapsto g^{\ast }|_{H^{2}(S,\mathbb{Z})}\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70C}_{2}:\text{Aut}(S)\rightarrow \text{GL}(H^{2}(S,\mathbb{Z}));\quad g\mapsto g^{\ast }|_{H^{2}(S,\mathbb{Z})}\end{eqnarray}$$ is faithful for any K3 surface  $S$. On the other hand, Dolgachev [Reference DolgachevDo84, 4.4] and Mukai and Namikawa [Reference Mukai and NamikawaMN84, Reference MukaiMu10] show that there are Enriques surfaces
$S$. On the other hand, Dolgachev [Reference DolgachevDo84, 4.4] and Mukai and Namikawa [Reference Mukai and NamikawaMN84, Reference MukaiMu10] show that there are Enriques surfaces  $E$ such that the action
$E$ such that the action  $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(E)\rightarrow \text{GL}(H^{2}(E,\mathbb{Z}))$ is not faithful. Here and hereafter, we denote
$\unicode[STIX]{x1D70C}_{2}:\text{Aut}(E)\rightarrow \text{GL}(H^{2}(E,\mathbb{Z}))$ is not faithful. Here and hereafter, we denote 
 $$\begin{eqnarray}\text{GL}(L):=\text{Aut}_{\text{group}}(L)\end{eqnarray}$$
$$\begin{eqnarray}\text{GL}(L):=\text{Aut}_{\text{group}}(L)\end{eqnarray}$$ for a finitely generated abelian group  $L$, possibly with nontrivial torsion.
$L$, possibly with nontrivial torsion.
 Throughout this note, by a hyper-Kähler manifold, we mean a simply connected compact Kähler manifold  $M$ admitting an everywhere nondegenerate global holomorphic
$M$ admitting an everywhere nondegenerate global holomorphic  $2$-form
$2$-form  $\unicode[STIX]{x1D714}_{M}$ such that
$\unicode[STIX]{x1D714}_{M}$ such that  $H^{0}(M,\unicode[STIX]{x1D6FA}_{M}^{2})=\mathbb{C}\unicode[STIX]{x1D714}_{M}$. Standard examples of hyper-Kähler manifolds are the Hilbert scheme
$H^{0}(M,\unicode[STIX]{x1D6FA}_{M}^{2})=\mathbb{C}\unicode[STIX]{x1D714}_{M}$. Standard examples of hyper-Kähler manifolds are the Hilbert scheme  $\text{Hilb}^{n}(S)$ of
$\text{Hilb}^{n}(S)$ of  $0$-dimensional closed subschemes of length
$0$-dimensional closed subschemes of length  $n$ on a K3 surface
$n$ on a K3 surface  $S$, the generalized Kummer manifold
$S$, the generalized Kummer manifold  $K_{n-1}\,(A)$, of dimension
$K_{n-1}\,(A)$, of dimension  $2(n-1)\geqslant 4$, associated to a
$2(n-1)\geqslant 4$, associated to a  $2$-dimensional complex torus
$2$-dimensional complex torus  $A$, and their deformations ([Reference BeauvilleBe83, Sections 6, 7], see also Section 2).
$A$, and their deformations ([Reference BeauvilleBe83, Sections 6, 7], see also Section 2).
Beauville [Reference BeauvilleBe83-2, Propositions 9, 10] considered a similar question for hyper-Kähler manifolds and found the following.
- (1) The action  $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(\text{Hilb}^{n}(S))\rightarrow \text{GL}(H^{2}(\text{Hilb}^{n}(S),\mathbb{Z}))$ is faithful. $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(\text{Hilb}^{n}(S))\rightarrow \text{GL}(H^{2}(\text{Hilb}^{n}(S),\mathbb{Z}))$ is faithful.
- (2) The action  $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(K_{n-1}(A))\rightarrow \text{GL}(H^{2}(K_{n-1}(A),\mathbb{Z}))$ is not faithful. More precisely, $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(K_{n-1}(A))\rightarrow \text{GL}(H^{2}(K_{n-1}(A),\mathbb{Z}))$ is not faithful. More precisely, $T(n)\subset \text{Ker}\,\unicode[STIX]{x1D70C}_{2}$. $T(n)\subset \text{Ker}\,\unicode[STIX]{x1D70C}_{2}$.
 Here  $T(n)\simeq (\mathbb{Z}/n)^{\oplus 4}$ is the group of automorphisms induced by the group of
$T(n)\simeq (\mathbb{Z}/n)^{\oplus 4}$ is the group of automorphisms induced by the group of  $n$-torsion points
$n$-torsion points  $T[n]:=\{a\in A|na=0\}$ of
$T[n]:=\{a\in A|na=0\}$ of  $A=\text{Aut}^{0}(A)$.
$A=\text{Aut}^{0}(A)$.
 It is natural and interesting to determine  $\text{Ker}\,\unicode[STIX]{x1D70C}_{2}$ in Theorem 1.1(2). In this direction, Boissière, Nieper-Wisskirchen, and Sarti [Reference Boissière, Nieper-Wisskirchen and SartiBNS11, Theorem 3, Corollary 5(2)] found the following complete answer.
$\text{Ker}\,\unicode[STIX]{x1D70C}_{2}$ in Theorem 1.1(2). In this direction, Boissière, Nieper-Wisskirchen, and Sarti [Reference Boissière, Nieper-Wisskirchen and SartiBNS11, Theorem 3, Corollary 5(2)] found the following complete answer.
Theorem 1.2.  $\text{Ker}(\unicode[STIX]{x1D70C}_{2}:\text{Aut}(K_{n-1}(A))\rightarrow \text{GL}(H^{2}(K_{n-1}(A),\mathbb{Z})))=T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$.
$\text{Ker}(\unicode[STIX]{x1D70C}_{2}:\text{Aut}(K_{n-1}(A))\rightarrow \text{GL}(H^{2}(K_{n-1}(A),\mathbb{Z})))=T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$.
 Here  $\unicode[STIX]{x1D704}$ is the automorphism induced by the inversion
$\unicode[STIX]{x1D704}$ is the automorphism induced by the inversion  $-1$ of
$-1$ of  $A$ and
$A$ and  $T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ is the semidirect product of
$T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ is the semidirect product of  $T(n)$ and
$T(n)$ and  $\langle \unicode[STIX]{x1D704}\rangle$, in which
$\langle \unicode[STIX]{x1D704}\rangle$, in which  $T(n)$ is normal.
$T(n)$ is normal.
 It is also natural and interesting to ask if the action of  $\text{Aut}(K_{n-1}(A))$ on the total cohomology group
$\text{Aut}(K_{n-1}(A))$ on the total cohomology group  $H^{\ast }(K_{n-1}(A),\mathbb{Z}):=\bigoplus _{k=0}^{4(n-1)}H^{k}(K_{n-1}(A),\mathbb{Z})$ is faithful or not.
$H^{\ast }(K_{n-1}(A),\mathbb{Z}):=\bigoplus _{k=0}^{4(n-1)}H^{k}(K_{n-1}(A),\mathbb{Z})$ is faithful or not.
Our aim is to answer this question in a slightly more generalized form.
Theorem 1.3. The action  $\unicode[STIX]{x1D70C}:\text{Aut}(Y)\rightarrow \text{GL}(H^{\ast }(Y,\mathbb{Z}))$ is faithful for any hyper-Kähler manifold
$\unicode[STIX]{x1D70C}:\text{Aut}(Y)\rightarrow \text{GL}(H^{\ast }(Y,\mathbb{Z}))$ is faithful for any hyper-Kähler manifold  $Y$ deformation equivalent to
$Y$ deformation equivalent to  $K_{n-1}(A)$.
$K_{n-1}(A)$.
 First we prove Theorem 1.3 for  $K_{n-1}(A)$. By Theorem 1.2, it suffices to show that
$K_{n-1}(A)$. By Theorem 1.2, it suffices to show that  $g^{\ast }|_{H^{\ast }(K_{n-1}(A),\mathbb{C})}\not =\text{id}$ for each
$g^{\ast }|_{H^{\ast }(K_{n-1}(A),\mathbb{C})}\not =\text{id}$ for each  $g\in (T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle )\setminus \{\text{id}\}$. This is checked in Section 3. We then prove Theorem 1.3 for any
$g\in (T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle )\setminus \{\text{id}\}$. This is checked in Section 3. We then prove Theorem 1.3 for any  $Y$ in Section 4, by using the density result due to Markman and Mehrotra [Reference Markman and MehrotraMM17]. In Section 5, among other things, we remark a similar result for deformation of the Hilbert scheme of a K3 surface (Theorem 5.1).
$Y$ in Section 4, by using the density result due to Markman and Mehrotra [Reference Markman and MehrotraMM17]. In Section 5, among other things, we remark a similar result for deformation of the Hilbert scheme of a K3 surface (Theorem 5.1).
 After posting this note on ArXiv (on 2012), Professor Y. Tschinkel kindly informed me that the action  $T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ on
$T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ on  $K_{n-1}(A)$ extends to a faithful action on any deformation
$K_{n-1}(A)$ extends to a faithful action on any deformation  $Y$ of
$Y$ of  $K_{n-1}(A)$, in such a way that the extended action is trivial on
$K_{n-1}(A)$, in such a way that the extended action is trivial on  $H^{2}(Y,\mathbb{Z})$ [Reference Hassett and TschinkelHT13, Theorem 2.1, Proposition 3.1]. In particular, this shows that the action
$H^{2}(Y,\mathbb{Z})$ [Reference Hassett and TschinkelHT13, Theorem 2.1, Proposition 3.1]. In particular, this shows that the action 
 $$\begin{eqnarray}\unicode[STIX]{x1D70C}_{2}:\text{Aut}(Y)\rightarrow \text{GL}(H^{2}(Y,\mathbb{Z}))\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70C}_{2}:\text{Aut}(Y)\rightarrow \text{GL}(H^{2}(Y,\mathbb{Z}))\end{eqnarray}$$ is not faithful even if  $Y$ is generic.
$Y$ is generic.
I should also mention that Theorem 1.3 is much motivated by the following question asked by Professor D. McDuff to me at the conference in Banff (July 2012), while the question itself is still completely open.
Question 1.4. Is there an example of a compact Kähler manifold  $M$ such that the biholomorphic automorphism group is discrete, that is,
$M$ such that the biholomorphic automorphism group is discrete, that is,  $\text{Aut}^{0}(M)=\{\text{id}_{M}\}$, but with a biholomorphic automorphism
$\text{Aut}^{0}(M)=\{\text{id}_{M}\}$, but with a biholomorphic automorphism  $g\not =\text{id}_{M}$ being homotopic to
$g\not =\text{id}_{M}$ being homotopic to  $\text{id}_{M}$ in the group of diffeomorphisms?
$\text{id}_{M}$ in the group of diffeomorphisms?
2 Preliminaries
 In this section, we mainly fix notations we shall use. We follow [Reference BeauvilleBe83] and [Reference BeauvilleBe83-2]. So,  $K_{n}(A)$ in [Reference Boissière, Nieper-Wisskirchen and SartiBNS11] is
$K_{n}(A)$ in [Reference Boissière, Nieper-Wisskirchen and SartiBNS11] is  $K_{n-1}(A)$ in this note.
$K_{n-1}(A)$ in this note.
We refer to [Reference BeauvilleBe83, Section 7] and [Reference Gross, Huybrechts and JoyceGHJ03, Part III] for more details on generalized Kummer manifolds and basic properties on hyper-Kähler manifolds.
 Let  $A$ be a
$A$ be a  $2$-dimensional complex torus and let
$2$-dimensional complex torus and let  $n$ be an integer such that
$n$ be an integer such that  $n\geqslant 3$. Let
$n\geqslant 3$. Let  $\text{Hilb}^{n}(A)$ be the Hilbert scheme of
$\text{Hilb}^{n}(A)$ be the Hilbert scheme of  $0$-dimensional closed subschemes of
$0$-dimensional closed subschemes of  $A$ of length
$A$ of length  $n$. Then
$n$. Then  $\text{Hilb}^{n}(A)$ is a smooth Kähler manifold of dimension
$\text{Hilb}^{n}(A)$ is a smooth Kähler manifold of dimension  $2n$. Let
$2n$. Let 
 $$\begin{eqnarray}\unicode[STIX]{x1D708}=\unicode[STIX]{x1D708}_{A}:\text{Hilb}^{n}(A)\rightarrow \text{Sym}^{n}(A)=A^{n}/S_{n}\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D708}=\unicode[STIX]{x1D708}_{A}:\text{Hilb}^{n}(A)\rightarrow \text{Sym}^{n}(A)=A^{n}/S_{n}\end{eqnarray}$$ be the Hilbert–Chow morphism. We denote the sum as  $0$-cycles by
$0$-cycles by  $\oplus$ and the sum in
$\oplus$ and the sum in  $A$ by
$A$ by  $+$. Then each element of
$+$. Then each element of  $\text{Sym}^{n}(A)$ is of the form
$\text{Sym}^{n}(A)$ is of the form 
 $$\begin{eqnarray}\bigoplus _{i=1}^{k}x_{i}^{\oplus m_{i}}.\end{eqnarray}$$
$$\begin{eqnarray}\bigoplus _{i=1}^{k}x_{i}^{\oplus m_{i}}.\end{eqnarray}$$ Here,  $x_{i}$ are distinct points on
$x_{i}$ are distinct points on  $A$ and
$A$ and  $m_{i}$ are positive integers such that
$m_{i}$ are positive integers such that  $\sum _{i=1}^{k}m_{i}=n$. We have the following surjective morphism
$\sum _{i=1}^{k}m_{i}=n$. We have the following surjective morphism 
 $$\begin{eqnarray}s:=s_{A}:\text{Sym}^{n}(A)\rightarrow A;\qquad \bigoplus _{i=1}^{k}x_{i}^{\oplus m_{i}}\mapsto \mathop{\sum }_{i=1}^{k}m_{i}x_{i}.\end{eqnarray}$$
$$\begin{eqnarray}s:=s_{A}:\text{Sym}^{n}(A)\rightarrow A;\qquad \bigoplus _{i=1}^{k}x_{i}^{\oplus m_{i}}\mapsto \mathop{\sum }_{i=1}^{k}m_{i}x_{i}.\end{eqnarray}$$ The generalized Kummer manifold  $K_{n-1}(A)$ is defined by
$K_{n-1}(A)$ is defined by 
 $$\begin{eqnarray}K_{n-1}(A):=(s\circ \unicode[STIX]{x1D708})^{-1}(0).\end{eqnarray}$$
$$\begin{eqnarray}K_{n-1}(A):=(s\circ \unicode[STIX]{x1D708})^{-1}(0).\end{eqnarray}$$Note that the morphism
 $$\begin{eqnarray}s\circ \unicode[STIX]{x1D708}=s_{A}\circ \unicode[STIX]{x1D708}_{A}:\text{Hilb}^{n}(A)\rightarrow A\end{eqnarray}$$
$$\begin{eqnarray}s\circ \unicode[STIX]{x1D708}=s_{A}\circ \unicode[STIX]{x1D708}_{A}:\text{Hilb}^{n}(A)\rightarrow A\end{eqnarray}$$ is a smooth surjective morphism such that all fibers are isomorphic [Reference BeauvilleBe83, Section 7]. So,  $K_{n-1}(A)$ is isomorphic to any fiber of
$K_{n-1}(A)$ is isomorphic to any fiber of  $s_{A}\circ \unicode[STIX]{x1D708}_{A}$. One can also describe
$s_{A}\circ \unicode[STIX]{x1D708}_{A}$. One can also describe  $K_{n-1}(A)$ in a slightly different way, as follows. Let
$K_{n-1}(A)$ in a slightly different way, as follows. Let 
 $$\begin{eqnarray}A(n-1):=\left\{(P_{1},P_{2},\ldots ,P_{n})\in A^{n}\,\bigg|\,\mathop{\sum }_{i=1}^{n}P_{i}=0\right\}.\end{eqnarray}$$
$$\begin{eqnarray}A(n-1):=\left\{(P_{1},P_{2},\ldots ,P_{n})\in A^{n}\,\bigg|\,\mathop{\sum }_{i=1}^{n}P_{i}=0\right\}.\end{eqnarray}$$ Then  $A(n-1)$ is a closed submanifold of
$A(n-1)$ is a closed submanifold of  $A^{n}$ and
$A^{n}$ and  $A(n-1)\simeq A^{n-1}$. Moreover,
$A(n-1)\simeq A^{n-1}$. Moreover,  $A(n-1)$ is stable under the action of
$A(n-1)$ is stable under the action of  $S_{n}$ on
$S_{n}$ on  $A^{n}$ and
$A^{n}$ and 
 $$\begin{eqnarray}\text{Sym}^{n}(A)\supset A^{(n-1)}:=s^{-1}(0)=A(n-1)/S_{n}.\end{eqnarray}$$
$$\begin{eqnarray}\text{Sym}^{n}(A)\supset A^{(n-1)}:=s^{-1}(0)=A(n-1)/S_{n}.\end{eqnarray}$$From this, we deduce that
 $$\begin{eqnarray}K_{n-1}(A)=\unicode[STIX]{x1D708}^{-1}(A^{(n-1)})=\text{Hilb}^{n}(A)\times _{\text{Sym}^{n}(A)}A^{(n-1)}.\end{eqnarray}$$
$$\begin{eqnarray}K_{n-1}(A)=\unicode[STIX]{x1D708}^{-1}(A^{(n-1)})=\text{Hilb}^{n}(A)\times _{\text{Sym}^{n}(A)}A^{(n-1)}.\end{eqnarray}$$ Recall that  $\dim \text{Def}(A)=4$, while
$\dim \text{Def}(A)=4$, while  $\dim \text{Def}(K_{n-1}(A))=5$ for
$\dim \text{Def}(K_{n-1}(A))=5$ for  $n\geqslant 3$ and any local deformation of a hyper-Kähler manifold is a hyper-Kähler manifold [Reference BeauvilleBe83, Section 7]. So, there are hyper-Kähler manifolds which are deformation equivalent to
$n\geqslant 3$ and any local deformation of a hyper-Kähler manifold is a hyper-Kähler manifold [Reference BeauvilleBe83, Section 7]. So, there are hyper-Kähler manifolds which are deformation equivalent to  $K_{n-1}(A)$ but are not isomorphic to any generalized Kummer manifold.
$K_{n-1}(A)$ but are not isomorphic to any generalized Kummer manifold.
 From now until the end of this note, we denote by  $X:=K_{n-1}(A)$ (
$X:=K_{n-1}(A)$ ( $n\geqslant 3$) the generalized Kummer manifold, of dimension
$n\geqslant 3$) the generalized Kummer manifold, of dimension  $2(n-1)$, associated to a
$2(n-1)$, associated to a  $2$-dimensional complex torus
$2$-dimensional complex torus  $A$ and by
$A$ and by  $K:=T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ the subgroup of
$K:=T(n){\vartriangleleft}\langle \unicode[STIX]{x1D704}\rangle$ the subgroup of  $\text{Aut}(K_{n-1}(A))$ defined in the Introduction. We also use the notations introduced in this section freely in the remaining sections.
$\text{Aut}(K_{n-1}(A))$ defined in the Introduction. We also use the notations introduced in this section freely in the remaining sections.
3 Proof of Theorem 1.3 for  $K_{n-1}(A)$
$K_{n-1}(A)$
 In this section, we prove Theorem 1.3 for  $K_{n-1}(A)$.
$K_{n-1}(A)$.
First we prove the following.
Proposition 3.1. Let  $g\in K\setminus T(n)$. Then
$g\in K\setminus T(n)$. Then  $g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$.
$g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$.
Proof. Let  $(z_{i}^{1},z_{i}^{2})$ (
$(z_{i}^{1},z_{i}^{2})$ ( $1\leqslant i\leqslant n$) be the standard global coordinates of the universal cover
$1\leqslant i\leqslant n$) be the standard global coordinates of the universal cover  $\mathbb{C}_{i}^{2}$ of the
$\mathbb{C}_{i}^{2}$ of the  $i$th factor
$i$th factor  $A_{i}=A$ of
$A_{i}=A$ of  $A^{n}$. Then the universal cover
$A^{n}$. Then the universal cover  $\mathbb{C}^{2(n-1)}$ of
$\mathbb{C}^{2(n-1)}$ of  $A(n-1)\simeq A^{n-1}$ is a closed submanifold of
$A(n-1)\simeq A^{n-1}$ is a closed submanifold of  $\mathbb{C}^{2n}$ defined by
$\mathbb{C}^{2n}$ defined by 
 $$\begin{eqnarray}z_{1}^{1}+z_{2}^{1}+\cdots +z_{n-1}^{1}+z_{n}^{1}=0,\qquad z_{1}^{2}+z_{2}^{2}+\cdots +z_{n-1}^{2}+z_{n}^{2}=0.\end{eqnarray}$$
$$\begin{eqnarray}z_{1}^{1}+z_{2}^{1}+\cdots +z_{n-1}^{1}+z_{n}^{1}=0,\qquad z_{1}^{2}+z_{2}^{2}+\cdots +z_{n-1}^{2}+z_{n}^{2}=0.\end{eqnarray}$$ In particular,  $(z_{i}^{1},z_{i}^{2})$ (
$(z_{i}^{1},z_{i}^{2})$ ( $1\leqslant i\leqslant n-1$) give the global coordinates of the universal cover
$1\leqslant i\leqslant n-1$) give the global coordinates of the universal cover  $\mathbb{C}^{2(n-1)}$ of
$\mathbb{C}^{2(n-1)}$ of  $A(n-1)$. Note that
$A(n-1)$. Note that  $1$-forms
$1$-forms  $dz_{i}^{1}$ and
$dz_{i}^{1}$ and  $dz_{i}^{2}$ (
$dz_{i}^{2}$ ( $1\leqslant i\leqslant n$) can be regarded as global
$1\leqslant i\leqslant n$) can be regarded as global  $1$-forms on
$1$-forms on  $A(n-1)$. They satisfy
$A(n-1)$. They satisfy 
 $$\begin{eqnarray}dz_{1}^{1}+dz_{2}^{1}+\cdots +dz_{n-1}^{1}+dz_{n}^{1}=0,\qquad dz_{1}^{2}+dz_{2}^{2}+\cdots +dz_{n-1}^{2}+dz_{n}^{2}=0,\end{eqnarray}$$
$$\begin{eqnarray}dz_{1}^{1}+dz_{2}^{1}+\cdots +dz_{n-1}^{1}+dz_{n}^{1}=0,\qquad dz_{1}^{2}+dz_{2}^{2}+\cdots +dz_{n-1}^{2}+dz_{n}^{2}=0,\end{eqnarray}$$ and  $\{dz_{i}^{1},dz_{i}^{2}(1\leqslant i\leqslant n-1)\}$ forms a basis of the space of global holomorphic
$\{dz_{i}^{1},dz_{i}^{2}(1\leqslant i\leqslant n-1)\}$ forms a basis of the space of global holomorphic  $1$-forms on
$1$-forms on  $A(n-1)\simeq A^{n-1}$. Consider the following global
$A(n-1)\simeq A^{n-1}$. Consider the following global  $(2,1)$-form
$(2,1)$-form  $\tilde{\unicode[STIX]{x1D70F}}$ on
$\tilde{\unicode[STIX]{x1D70F}}$ on  $A(n-1)$:
$A(n-1)$: 
 $$\begin{eqnarray}\tilde{\unicode[STIX]{x1D70F}}=dz_{1}^{1}\wedge dz_{1}^{2}\wedge d\overline{z}_{1}^{2}+\cdots +dz_{n-1}^{1}\wedge dz_{n-1}^{2}\wedge d\overline{z}_{n-1}^{2}+dz_{n}^{1}\wedge dz_{n}^{2}\wedge d\overline{z}_{n}^{2}.\end{eqnarray}$$
$$\begin{eqnarray}\tilde{\unicode[STIX]{x1D70F}}=dz_{1}^{1}\wedge dz_{1}^{2}\wedge d\overline{z}_{1}^{2}+\cdots +dz_{n-1}^{1}\wedge dz_{n-1}^{2}\wedge d\overline{z}_{n-1}^{2}+dz_{n}^{1}\wedge dz_{n}^{2}\wedge d\overline{z}_{n}^{2}.\end{eqnarray}$$Lemma 3.2.  $\tilde{\unicode[STIX]{x1D70F}}$ descends to a nonzero element
$\tilde{\unicode[STIX]{x1D70F}}$ descends to a nonzero element  $\unicode[STIX]{x1D70F}$ of
$\unicode[STIX]{x1D70F}$ of  $H^{2,1}(X)$.
$H^{2,1}(X)$.
Proof. Recall that, for compact Kähler orbifolds, the Hodge decomposition is pure and the Hodge theory works in the same way as smooth compact manifolds [Reference SteenbrinkSt77].
 Since  $\tilde{\unicode[STIX]{x1D70F}}$ is
$\tilde{\unicode[STIX]{x1D70F}}$ is  $S_{n}$-invariant, it descends to a global
$S_{n}$-invariant, it descends to a global  $(2,1)$-form, say
$(2,1)$-form, say  $\overline{\unicode[STIX]{x1D70F}}$, on the compact Kähler orbifold
$\overline{\unicode[STIX]{x1D70F}}$, on the compact Kähler orbifold  $A^{(n-1)}$. Then
$A^{(n-1)}$. Then  $\unicode[STIX]{x1D70F}=(\unicode[STIX]{x1D708}|_{X})^{\ast }\overline{\unicode[STIX]{x1D70F}}\in H^{2,1}(X)$ under
$\unicode[STIX]{x1D70F}=(\unicode[STIX]{x1D708}|_{X})^{\ast }\overline{\unicode[STIX]{x1D70F}}\in H^{2,1}(X)$ under  $\unicode[STIX]{x1D708}|_{X}:X\rightarrow A^{(n-1)}$. It remains to show that
$\unicode[STIX]{x1D708}|_{X}:X\rightarrow A^{(n-1)}$. It remains to show that  $\unicode[STIX]{x1D70F}\not =0$. Since
$\unicode[STIX]{x1D70F}\not =0$. Since  $(\unicode[STIX]{x1D708}|_{X})^{\ast }$ is injective, it suffices to show that
$(\unicode[STIX]{x1D708}|_{X})^{\ast }$ is injective, it suffices to show that  $\overline{\unicode[STIX]{x1D70F}}\not =0$ in
$\overline{\unicode[STIX]{x1D70F}}\not =0$ in  $H^{2,1}(A^{(n-1)})$. For this, it suffices to show that
$H^{2,1}(A^{(n-1)})$. For this, it suffices to show that  $\tilde{\unicode[STIX]{x1D70F}}\not =0$ in
$\tilde{\unicode[STIX]{x1D70F}}\not =0$ in  $H^{2,1}(A(n-1))$, as
$H^{2,1}(A(n-1))$, as  $q^{\ast }$ is also injective for the quotient map
$q^{\ast }$ is also injective for the quotient map  $q:A(n-1)\rightarrow A^{(n-1)}$. By Equation (3.2), we have
$q:A(n-1)\rightarrow A^{(n-1)}$. By Equation (3.2), we have 
 $$\begin{eqnarray}\displaystyle \tilde{\unicode[STIX]{x1D70F}} & = & \displaystyle dz_{1}^{1}\wedge dz_{1}^{2}\wedge d\overline{z}_{1}^{2}+\cdots +dz_{n-1}^{1}\wedge dz_{n-1}^{2}\wedge d\overline{z}_{n-1}^{2}\nonumber\\ \displaystyle & & \displaystyle -\,\left(\mathop{\sum }_{k=1}^{n-1}dz_{k}^{1}\right)\wedge \left(\mathop{\sum }_{k=1}^{n-1}dz_{k}^{2}\right)\wedge \left(\mathop{\sum }_{k=1}^{n-1}d\overline{z}_{k}^{2}\right).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \tilde{\unicode[STIX]{x1D70F}} & = & \displaystyle dz_{1}^{1}\wedge dz_{1}^{2}\wedge d\overline{z}_{1}^{2}+\cdots +dz_{n-1}^{1}\wedge dz_{n-1}^{2}\wedge d\overline{z}_{n-1}^{2}\nonumber\\ \displaystyle & & \displaystyle -\,\left(\mathop{\sum }_{k=1}^{n-1}dz_{k}^{1}\right)\wedge \left(\mathop{\sum }_{k=1}^{n-1}dz_{k}^{2}\right)\wedge \left(\mathop{\sum }_{k=1}^{n-1}d\overline{z}_{k}^{2}\right).\nonumber\end{eqnarray}$$ This is the expression of  $\tilde{\unicode[STIX]{x1D70F}}$ in terms of the standard basis of
$\tilde{\unicode[STIX]{x1D70F}}$ in terms of the standard basis of  $H^{2,1}(A(n-1))$. As
$H^{2,1}(A(n-1))$. As  $n-1\geqslant 2$, the term
$n-1\geqslant 2$, the term 
 $$\begin{eqnarray}dz_{1}^{1}\wedge dz_{2}^{2}\wedge d\overline{z}_{2}^{2}\end{eqnarray}$$
$$\begin{eqnarray}dz_{1}^{1}\wedge dz_{2}^{2}\wedge d\overline{z}_{2}^{2}\end{eqnarray}$$ appears with coefficient  $-1$ in this expression. Hence
$-1$ in this expression. Hence  $\tilde{\unicode[STIX]{x1D70F}}\not =0$ in
$\tilde{\unicode[STIX]{x1D70F}}\not =0$ in  $H^{2,1}(A(n-1))$. This proves Lemma 3.2.◻
$H^{2,1}(A(n-1))$. This proves Lemma 3.2.◻
Lemma 3.3. Let  $g\in K\setminus T(n)$ and
$g\in K\setminus T(n)$ and  $\unicode[STIX]{x1D70F}\in H^{2,1}(X)$ be as in Lemma 3.2. Then
$\unicode[STIX]{x1D70F}\in H^{2,1}(X)$ be as in Lemma 3.2. Then  $g^{\ast }\unicode[STIX]{x1D70F}=-\unicode[STIX]{x1D70F}$. In particular,
$g^{\ast }\unicode[STIX]{x1D70F}=-\unicode[STIX]{x1D70F}$. In particular,  $g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$.
$g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$.
Proof. The automorphism  $g$ acts equivariantly on
$g$ acts equivariantly on  $A(n-1)\rightarrow \,\,A^{(n-1)}\leftarrow X$. For
$A(n-1)\rightarrow \,\,A^{(n-1)}\leftarrow X$. For  $\unicode[STIX]{x1D704}$, hence for
$\unicode[STIX]{x1D704}$, hence for  $g\in K\setminus T(n)$, we have
$g\in K\setminus T(n)$, we have 
 $$\begin{eqnarray}\unicode[STIX]{x1D704}^{\ast }dz_{i}^{q}=-dz_{i}^{q},\qquad g^{\ast }dz_{i}^{q}=-dz_{i}^{q}\;(1\leqslant i\leqslant n,q=1,2).\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D704}^{\ast }dz_{i}^{q}=-dz_{i}^{q},\qquad g^{\ast }dz_{i}^{q}=-dz_{i}^{q}\;(1\leqslant i\leqslant n,q=1,2).\end{eqnarray}$$ Hence  $g^{\ast }\tilde{\unicode[STIX]{x1D70F}}=-\tilde{\unicode[STIX]{x1D70F}}$ by the shape of
$g^{\ast }\tilde{\unicode[STIX]{x1D70F}}=-\tilde{\unicode[STIX]{x1D70F}}$ by the shape of  $\tilde{\unicode[STIX]{x1D70F}}$. Thus
$\tilde{\unicode[STIX]{x1D70F}}$. Thus  $g^{\ast }\unicode[STIX]{x1D70F}=-\unicode[STIX]{x1D70F}$. By Lemma 3.2,
$g^{\ast }\unicode[STIX]{x1D70F}=-\unicode[STIX]{x1D70F}$. By Lemma 3.2,  $\unicode[STIX]{x1D70F}\not =0$ in
$\unicode[STIX]{x1D70F}\not =0$ in  $H^{2,1}(X)$. Hence
$H^{2,1}(X)$. Hence  $g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$ as claimed.◻
$g^{\ast }|_{H^{3}(X,\mathbb{C})}\not =\text{id}$ as claimed.◻
Next we prove the following.
Proposition 3.4. Let  $a\in T(n)\setminus \{\text{id}\}$. Then
$a\in T(n)\setminus \{\text{id}\}$. Then  $a^{\ast }|_{H^{\ast }(X,\mathbb{C})}\not =\text{id}$.
$a^{\ast }|_{H^{\ast }(X,\mathbb{C})}\not =\text{id}$.
Proof. Let  $a\in T(n)\simeq (\mathbb{Z}/n\mathbb{Z})^{\oplus 4}$ be an element of order
$a\in T(n)\simeq (\mathbb{Z}/n\mathbb{Z})^{\oplus 4}$ be an element of order  $p\not =1$ (
$p\not =1$ ( $p$ is not necessarily a prime number). Set
$p$ is not necessarily a prime number). Set  $d=n/p$. Then
$d=n/p$. Then  $d$ is a positive integer such that
$d$ is a positive integer such that  $d<n$. We freely regard
$d<n$. We freely regard  $a$ also as a torsion element of order
$a$ also as a torsion element of order  $p$ in
$p$ in  $A$ and automorphisms of various spaces which are naturally and equivariantly induced by the translation automorphism
$A$ and automorphisms of various spaces which are naturally and equivariantly induced by the translation automorphism  $x\mapsto x+a$ of
$x\mapsto x+a$ of  $A$.
$A$.
We will show first Lemma 3.5, Theorem 3.6 and Lemma 3.7, and then we will conclude the proof of Proposition 3.4.
Lemma 3.5. The fixed locus  $X^{a}$ consists of
$X^{a}$ consists of  $p^{3}$ connected components
$p^{3}$ connected components  $F_{i}\;(1\leqslant i\leqslant p^{3})$. Moreover, each
$F_{i}\;(1\leqslant i\leqslant p^{3})$. Moreover, each  $F_{i}$ is isomorphic to the generalized Kummer manifold
$F_{i}$ is isomorphic to the generalized Kummer manifold  $K_{d-1}(A/\langle a\rangle )$ associated to the
$K_{d-1}(A/\langle a\rangle )$ associated to the  $2$-dimensional complex torus
$2$-dimensional complex torus  $A/\langle a\rangle$.
$A/\langle a\rangle$.
Proof. Let  ${\mathcal{S}}\subset A$ be a
${\mathcal{S}}\subset A$ be a  $0$-dimensional closed subscheme of length
$0$-dimensional closed subscheme of length  $n$. As
$n$. As  $\langle a\rangle$ acts freely on
$\langle a\rangle$ acts freely on  $A$, the quotient map
$A$, the quotient map  $\unicode[STIX]{x1D70B}:A\rightarrow A/\langle a\rangle$ is étale of degree
$\unicode[STIX]{x1D70B}:A\rightarrow A/\langle a\rangle$ is étale of degree  $p$. It follows that
$p$. It follows that  $a_{\ast }{\mathcal{S}}={\mathcal{S}}$ if and only if there is a
$a_{\ast }{\mathcal{S}}={\mathcal{S}}$ if and only if there is a  $0$-dimensional closed subscheme
$0$-dimensional closed subscheme  ${\mathcal{T}}\subset A/\langle a\rangle$ of length
${\mathcal{T}}\subset A/\langle a\rangle$ of length  $d=n/p$ such that
$d=n/p$ such that  ${\mathcal{S}}=\unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}$. This
${\mathcal{S}}=\unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}$. This  ${\mathcal{T}}$ is clearly unique and we obtain an isomorphism
${\mathcal{T}}$ is clearly unique and we obtain an isomorphism 
 $$\begin{eqnarray}\text{Hilb}^{d}(A/\langle a\rangle )\simeq (\text{Hilb}^{n}(A))^{a};\qquad {\mathcal{T}}\mapsto \unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}.\end{eqnarray}$$
$$\begin{eqnarray}\text{Hilb}^{d}(A/\langle a\rangle )\simeq (\text{Hilb}^{n}(A))^{a};\qquad {\mathcal{T}}\mapsto \unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}.\end{eqnarray}$$ Let  ${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$. Then
${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$. Then  $\unicode[STIX]{x1D708}({\mathcal{S}})\in (\text{Sym}^{n}(A))^{a}$ as well, and
$\unicode[STIX]{x1D708}({\mathcal{S}})\in (\text{Sym}^{n}(A))^{a}$ as well, and  $\unicode[STIX]{x1D708}({\mathcal{S}})$ is then of the form
$\unicode[STIX]{x1D708}({\mathcal{S}})$ is then of the form 
 $$\begin{eqnarray}\unicode[STIX]{x1D708}({\mathcal{S}})=\bigoplus _{i=1}^{k}\hspace{0.0pt}\bigoplus _{j=0}^{p-1}(x_{i}+ja)^{\oplus m_{i}}\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D708}({\mathcal{S}})=\bigoplus _{i=1}^{k}\hspace{0.0pt}\bigoplus _{j=0}^{p-1}(x_{i}+ja)^{\oplus m_{i}}\end{eqnarray}$$ (and vice versa). Here  $\sum _{i=1}^{k}m_{i}=d$ and all points
$\sum _{i=1}^{k}m_{i}=d$ and all points  $x_{i}+ja$ are distinct. Observe also that
$x_{i}+ja$ are distinct. Observe also that 
 $$\begin{eqnarray}K_{n-1}(A)^{a}=(\text{Hilb}^{n}(A))^{a}\cap K_{n-1}(A).\end{eqnarray}$$
$$\begin{eqnarray}K_{n-1}(A)^{a}=(\text{Hilb}^{n}(A))^{a}\cap K_{n-1}(A).\end{eqnarray}$$ As  ${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$ by our choice of
${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$ by our choice of  ${\mathcal{S}}$, it follows from the equality above that
${\mathcal{S}}$, it follows from the equality above that  ${\mathcal{S}}\in K_{n-1}(A)^{a}$ if and only if
${\mathcal{S}}\in K_{n-1}(A)^{a}$ if and only if  ${\mathcal{S}}\in K_{n-1}(A)$, that is,
${\mathcal{S}}\in K_{n-1}(A)$, that is,  ${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$ satisfies (by the definition of
${\mathcal{S}}\in (\text{Hilb}^{n}(A))^{a}$ satisfies (by the definition of  $K_{n-1}(A)$ and by the shape of
$K_{n-1}(A)$ and by the shape of  $\unicode[STIX]{x1D708}({\mathcal{S}})$) that
$\unicode[STIX]{x1D708}({\mathcal{S}})$) that 
 $$\begin{eqnarray}p(m_{1}x_{1}+m_{2}x_{2}+\cdots +m_{k}x_{k}+\unicode[STIX]{x1D6FC})=0\end{eqnarray}$$
$$\begin{eqnarray}p(m_{1}x_{1}+m_{2}x_{2}+\cdots +m_{k}x_{k}+\unicode[STIX]{x1D6FC})=0\end{eqnarray}$$ in  $A$. Here
$A$. Here  $n(p-1)/2\in \mathbb{Z}$ and
$n(p-1)/2\in \mathbb{Z}$ and  $\unicode[STIX]{x1D6FC}\in A$ is an element such that
$\unicode[STIX]{x1D6FC}\in A$ is an element such that 
 $$\begin{eqnarray}p\unicode[STIX]{x1D6FC}=(n(p-1)/2)a\end{eqnarray}$$
$$\begin{eqnarray}p\unicode[STIX]{x1D6FC}=(n(p-1)/2)a\end{eqnarray}$$ in  $A$. We choose and fix such
$A$. We choose and fix such  $\unicode[STIX]{x1D6FC}$.
$\unicode[STIX]{x1D6FC}$.
 Let  $A[p]$ be the group of
$A[p]$ be the group of  $p$-torsion points of
$p$-torsion points of  $A$. Then, Equation (3.4) is equivalent to
$A$. Then, Equation (3.4) is equivalent to 
 $$\begin{eqnarray}m_{1}x_{1}+m_{2}x_{2}+\cdots +m_{k}x_{k}+\unicode[STIX]{x1D6FC}\in A[p].\end{eqnarray}$$
$$\begin{eqnarray}m_{1}x_{1}+m_{2}x_{2}+\cdots +m_{k}x_{k}+\unicode[STIX]{x1D6FC}\in A[p].\end{eqnarray}$$ Since  $a$ is also a
$a$ is also a  $p$-torsion point, Equation (3.5) is also equivalent to
$p$-torsion point, Equation (3.5) is also equivalent to 
 $$\begin{eqnarray}m_{1}\unicode[STIX]{x1D70B}(x_{1})+m_{2}\unicode[STIX]{x1D70B}(x_{2})+\cdots +m_{k}\unicode[STIX]{x1D70B}(x_{k})+\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D6FC})\in \unicode[STIX]{x1D70B}(A[p])=A[p]/\langle a\rangle .\end{eqnarray}$$
$$\begin{eqnarray}m_{1}\unicode[STIX]{x1D70B}(x_{1})+m_{2}\unicode[STIX]{x1D70B}(x_{2})+\cdots +m_{k}\unicode[STIX]{x1D70B}(x_{k})+\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D6FC})\in \unicode[STIX]{x1D70B}(A[p])=A[p]/\langle a\rangle .\end{eqnarray}$$ Write  ${\mathcal{S}}=\unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}$. Then, Equation (3.6) holds if and only if
${\mathcal{S}}=\unicode[STIX]{x1D70B}^{\ast }{\mathcal{T}}$. Then, Equation (3.6) holds if and only if  ${\mathcal{T}}$ is in the fibers of
${\mathcal{T}}$ is in the fibers of 
 $$\begin{eqnarray}s_{A/\langle a\rangle }\circ \unicode[STIX]{x1D708}_{A/\langle a\rangle }:\text{Hilb}^{d}(A/\langle a\rangle )\rightarrow A/\langle a\rangle\end{eqnarray}$$
$$\begin{eqnarray}s_{A/\langle a\rangle }\circ \unicode[STIX]{x1D708}_{A/\langle a\rangle }:\text{Hilb}^{d}(A/\langle a\rangle )\rightarrow A/\langle a\rangle\end{eqnarray}$$ over  $\unicode[STIX]{x1D70B}(A[p])$. We have
$\unicode[STIX]{x1D70B}(A[p])$. We have  $|\unicode[STIX]{x1D70B}(A[p])|=p^{3}$, as
$|\unicode[STIX]{x1D70B}(A[p])|=p^{3}$, as  $a$ is also
$a$ is also  $p$-torsion. Hence, by the isomorphism (3.3), the fixed locus
$p$-torsion. Hence, by the isomorphism (3.3), the fixed locus  $K_{n-1}(A)^{a}$ is isomorphic to the union of
$K_{n-1}(A)^{a}$ is isomorphic to the union of  $p^{3}$ fibers of
$p^{3}$ fibers of  $s_{A/\langle a\rangle }\circ \unicode[STIX]{x1D708}_{A/\langle a\rangle }$ and each fiber is isomorphic to
$s_{A/\langle a\rangle }\circ \unicode[STIX]{x1D708}_{A/\langle a\rangle }$ and each fiber is isomorphic to  $K_{d-1}(A/\langle a\rangle )$ as remarked in Section 2. This completes the proof of Lemma 3.5.◻
$K_{d-1}(A/\langle a\rangle )$ as remarked in Section 2. This completes the proof of Lemma 3.5.◻
Set
 $$\begin{eqnarray}\unicode[STIX]{x1D70E}(n)=\mathop{\sum }_{1\leqslant b|n}b,\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70E}(n)=\mathop{\sum }_{1\leqslant b|n}b,\end{eqnarray}$$ the sum of all positive divisors of a positive integer  $n$. The following fundamental result due to Göttche and Soergel ([Reference Göttsche and SoergelGS93, Corollary 1], see also [Reference GöttscheGo94, Reference DebarreDe10]) is crucial in our proof.
$n$. The following fundamental result due to Göttche and Soergel ([Reference Göttsche and SoergelGS93, Corollary 1], see also [Reference GöttscheGo94, Reference DebarreDe10]) is crucial in our proof.
Theorem 3.6. The topological Euler number  $\unicode[STIX]{x1D712}_{\text{top}}(K_{n-1}(A))$ of
$\unicode[STIX]{x1D712}_{\text{top}}(K_{n-1}(A))$ of  $K_{n-1}(A)$  is
$K_{n-1}(A)$  is  $n^{3}\unicode[STIX]{x1D70E}(n)$. (This is also valid for
$n^{3}\unicode[STIX]{x1D70E}(n)$. (This is also valid for  $n=1,2$.)
$n=1,2$.)
 Now we consider the Lefschetz number of  $h\in \text{Aut}(X)$:
$h\in \text{Aut}(X)$: 
 $$\begin{eqnarray}L(h):=\mathop{\sum }_{k=0}^{4(n-1)}(-1)^{k}\,\text{tr}\,h^{\ast }|_{H^{k}(X,\mathbb{C})}.\end{eqnarray}$$
$$\begin{eqnarray}L(h):=\mathop{\sum }_{k=0}^{4(n-1)}(-1)^{k}\,\text{tr}\,h^{\ast }|_{H^{k}(X,\mathbb{C})}.\end{eqnarray}$$- (1) If  $h\in \text{Aut}(X)$ is cohomologically trivial, then $h\in \text{Aut}(X)$ is cohomologically trivial, then $L(h)=n^{3}\unicode[STIX]{x1D70E}(n)$. $L(h)=n^{3}\unicode[STIX]{x1D70E}(n)$.
- (2)  $L(a)=n^{3}\unicode[STIX]{x1D70E}(d)$ for any element $L(a)=n^{3}\unicode[STIX]{x1D70E}(d)$ for any element $a$ of order $a$ of order $p$ in $p$ in $T(n)\setminus \{\text{id}\}$ with $T(n)\setminus \{\text{id}\}$ with $d=n/p$. $d=n/p$.
Proof. If  $h$ is cohomologically trivial, then
$h$ is cohomologically trivial, then  $\text{tr}\,h^{\ast }|_{H^{k}(X,\mathbb{C})}=b_{k}(X)$. This implies (1). By the topological Lefschetz fixed point formula, Lemma 3.5 and Theorem 3.6, we obtain
$\text{tr}\,h^{\ast }|_{H^{k}(X,\mathbb{C})}=b_{k}(X)$. This implies (1). By the topological Lefschetz fixed point formula, Lemma 3.5 and Theorem 3.6, we obtain 
 $$\begin{eqnarray}L(a)=\unicode[STIX]{x1D712}_{\text{top}}(X^{a})=p^{3}\unicode[STIX]{x1D712}_{\text{top}}(K_{d-1}(A/\langle a\rangle ))=p^{3}\cdot d^{3}\unicode[STIX]{x1D70E}(d)=n^{3}\unicode[STIX]{x1D70E}(d).\end{eqnarray}$$
$$\begin{eqnarray}L(a)=\unicode[STIX]{x1D712}_{\text{top}}(X^{a})=p^{3}\unicode[STIX]{x1D712}_{\text{top}}(K_{d-1}(A/\langle a\rangle ))=p^{3}\cdot d^{3}\unicode[STIX]{x1D70E}(d)=n^{3}\unicode[STIX]{x1D70E}(d).\end{eqnarray}$$This is nothing but the assertion (2). This proves Lemma 3.7. ◻
 Since  $d|n$ and
$d|n$ and  $d\not =n$, it follows that
$d\not =n$, it follows that 
 $$\begin{eqnarray}\unicode[STIX]{x1D70E}(d)\leqslant \unicode[STIX]{x1D70E}(n)-n<\unicode[STIX]{x1D70E}(n).\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70E}(d)\leqslant \unicode[STIX]{x1D70E}(n)-n<\unicode[STIX]{x1D70E}(n).\end{eqnarray}$$ Hence  $a\in T(n)\setminus \{\text{id}\}$ is not cohomologically trivial by Lemma 3.7. This proves Proposition 3.4.◻
$a\in T(n)\setminus \{\text{id}\}$ is not cohomologically trivial by Lemma 3.7. This proves Proposition 3.4.◻
 Theorem 1.3 for  $K_{n-1}(A)$ now follows from Theorem 1.2, Propositions 3.1 and 3.4. This completes the proof of Theorem 1.3 for
$K_{n-1}(A)$ now follows from Theorem 1.2, Propositions 3.1 and 3.4. This completes the proof of Theorem 1.3 for  $K_{n-1}(A)$.
$K_{n-1}(A)$.
4 Proof of Theorem 1.3
 In this section, we shall prove Theorem 1.3 for any  $Y$.
$Y$.
 Let  $\unicode[STIX]{x1D6EC}=(\unicode[STIX]{x1D6EC},(\ast ,\ast \ast ))$ be a fixed abstract lattice isometric to
$\unicode[STIX]{x1D6EC}=(\unicode[STIX]{x1D6EC},(\ast ,\ast \ast ))$ be a fixed abstract lattice isometric to  $(H^{2}(K_{n-1}(A),\mathbb{Z}),b)$. Here
$(H^{2}(K_{n-1}(A),\mathbb{Z}),b)$. Here  $b$ is the Beauville–Bogomolov form of
$b$ is the Beauville–Bogomolov form of  $K_{n-1}(A)$ (see e.g. [Reference Gross, Huybrechts and JoyceGHJ03, Example 23.20]).
$K_{n-1}(A)$ (see e.g. [Reference Gross, Huybrechts and JoyceGHJ03, Example 23.20]).
 Let  $Y$ be a hyper-Kähler manifold deformation equivalent to a generalized Kummer manifold
$Y$ be a hyper-Kähler manifold deformation equivalent to a generalized Kummer manifold  $X=K_{n-1}(A)$. Let
$X=K_{n-1}(A)$. Let  $g\in \text{Aut}(Y)$ such that
$g\in \text{Aut}(Y)$ such that  $g^{\ast }|_{H^{\ast }(Y,\mathbb{Z})}=\text{id}$. We are going to show that
$g^{\ast }|_{H^{\ast }(Y,\mathbb{Z})}=\text{id}$. We are going to show that  $g=\text{id}_{Y}$.
$g=\text{id}_{Y}$.
 Let  ${\mathcal{M}}^{0}$ be the connected component of the marked moduli space of
${\mathcal{M}}^{0}$ be the connected component of the marked moduli space of  ${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$, containing
${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$, containing  $(Y,\unicode[STIX]{x1D702})$. Here
$(Y,\unicode[STIX]{x1D702})$. Here  $\unicode[STIX]{x1D702}:H^{2}(Y,\mathbb{Z})\rightarrow \unicode[STIX]{x1D6EC}$ is a marking. Huybrechts constructed the marked moduli space
$\unicode[STIX]{x1D702}:H^{2}(Y,\mathbb{Z})\rightarrow \unicode[STIX]{x1D6EC}$ is a marking. Huybrechts constructed the marked moduli space  ${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$ [Reference HuybrechtsHu99, 1.18] by patching Kuranishi spaces via local Torelli theorem for hyper-Kähler manifolds ([Reference BeauvilleBe83, Theorem 5], [Reference Gross, Huybrechts and JoyceGHJ03, 25.2]). By construction,
${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$ [Reference HuybrechtsHu99, 1.18] by patching Kuranishi spaces via local Torelli theorem for hyper-Kähler manifolds ([Reference BeauvilleBe83, Theorem 5], [Reference Gross, Huybrechts and JoyceGHJ03, 25.2]). By construction,  ${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$ is smooth, but highly non-Hausdorff. He also showed that the period map
${\mathcal{M}}_{\unicode[STIX]{x1D6EC}}$ is smooth, but highly non-Hausdorff. He also showed that the period map 
 $$\begin{eqnarray}p:{\mathcal{M}}^{0}\rightarrow {\mathcal{D}}=\{[\unicode[STIX]{x1D714}]\in \mathbb{P}(\unicode[STIX]{x1D6EC}\otimes \mathbb{C})|(\unicode[STIX]{x1D714},\unicode[STIX]{x1D714})=0,(\unicode[STIX]{x1D714},\overline{\unicode[STIX]{x1D714}})>0\}\end{eqnarray}$$
$$\begin{eqnarray}p:{\mathcal{M}}^{0}\rightarrow {\mathcal{D}}=\{[\unicode[STIX]{x1D714}]\in \mathbb{P}(\unicode[STIX]{x1D6EC}\otimes \mathbb{C})|(\unicode[STIX]{x1D714},\unicode[STIX]{x1D714})=0,(\unicode[STIX]{x1D714},\overline{\unicode[STIX]{x1D714}})>0\}\end{eqnarray}$$ is a surjective holomorphic map of degree  $1$ ([Reference HuybrechtsHu99, Theorem 8.1], see also [Reference VerbitskyVe13, Reference HuybrechtsHu12] for degree and further development). Let
$1$ ([Reference HuybrechtsHu99, Theorem 8.1], see also [Reference VerbitskyVe13, Reference HuybrechtsHu12] for degree and further development). Let  $[\unicode[STIX]{x1D714}]\in {\mathcal{D}}$. If
$[\unicode[STIX]{x1D714}]\in {\mathcal{D}}$. If  $p^{-1}([\unicode[STIX]{x1D714}])$ (
$p^{-1}([\unicode[STIX]{x1D714}])$ ( $\subset {\mathcal{M}}^{0}$) is not a single point, then
$\subset {\mathcal{M}}^{0}$) is not a single point, then  $p^{-1}([\unicode[STIX]{x1D714}])$ consists of points, being mutually inseparable, corresponding to birational hyper-Kähler manifolds [Reference HuybrechtsHu99, Theorem 8.1].
$p^{-1}([\unicode[STIX]{x1D714}])$ consists of points, being mutually inseparable, corresponding to birational hyper-Kähler manifolds [Reference HuybrechtsHu99, Theorem 8.1].
 By using the Hodge theoretic Torelli type theorem [Reference MarkmanMa11], Markman and Mehrotra [Reference Markman and MehrotraMM17, Theorem 4.1] proved that the marked generalized Kummer manifolds are dense in  ${\mathcal{M}}^{0}$. Actually they proved the following stronger density result:
${\mathcal{M}}^{0}$. Actually they proved the following stronger density result:
Theorem 4.1. There is a dense subset  ${\mathcal{D}}^{\prime }\subset {\mathcal{D}}$ such that if
${\mathcal{D}}^{\prime }\subset {\mathcal{D}}$ such that if  $[\unicode[STIX]{x1D714}]\in {\mathcal{D}}^{\prime }$, then any point of
$[\unicode[STIX]{x1D714}]\in {\mathcal{D}}^{\prime }$, then any point of  $p^{-1}([\unicode[STIX]{x1D714}])$ corresponds to a marked generalized Kummer manifold.
$p^{-1}([\unicode[STIX]{x1D714}])$ corresponds to a marked generalized Kummer manifold.
 Consider the Kuranishi family  $u:{\mathcal{U}}\rightarrow {\mathcal{K}}$ of
$u:{\mathcal{U}}\rightarrow {\mathcal{K}}$ of  $Y$. Here and hereafter we freely shrink
$Y$. Here and hereafter we freely shrink  ${\mathcal{K}}$ around
${\mathcal{K}}$ around  $0=[Y]$. Since the Kuranishi family is universal,
$0=[Y]$. Since the Kuranishi family is universal,  $g\in \text{Aut}(Y)$ induces automorphisms
$g\in \text{Aut}(Y)$ induces automorphisms  $\tilde{g}\in \text{Aut}({\mathcal{U}})$ and
$\tilde{g}\in \text{Aut}({\mathcal{U}})$ and  $\overline{g}\in \text{Aut}({\mathcal{K}})$ such that
$\overline{g}\in \text{Aut}({\mathcal{K}})$ such that  $u\circ \tilde{g}=\overline{g}\circ u$ and
$u\circ \tilde{g}=\overline{g}\circ u$ and  $\tilde{g}|Y=g$. Since
$\tilde{g}|Y=g$. Since  ${\mathcal{K}}$ is locally isomorphic to
${\mathcal{K}}$ is locally isomorphic to  ${\mathcal{D}}$ by the local Torelli theorem, the locus
${\mathcal{D}}$ by the local Torelli theorem, the locus 
 $$\begin{eqnarray}{\mathcal{K}}^{\prime }\subset {\mathcal{K}},\end{eqnarray}$$
$$\begin{eqnarray}{\mathcal{K}}^{\prime }\subset {\mathcal{K}},\end{eqnarray}$$ consisting of the point  $t$ such that
$t$ such that  $u^{-1}(t)$ is a generalized Kummer manifold, is dense in
$u^{-1}(t)$ is a generalized Kummer manifold, is dense in  ${\mathcal{K}}$. This is a direct consequence of Theorem 4.1 and the construction of
${\mathcal{K}}$. This is a direct consequence of Theorem 4.1 and the construction of  ${\mathcal{M}}^{0}$ explained above. Here we also emphasize that the density in
${\mathcal{M}}^{0}$ explained above. Here we also emphasize that the density in  ${\mathcal{M}}^{0}$is not sufficient to conclude this.
${\mathcal{M}}^{0}$is not sufficient to conclude this.
From now, we follow Beauville’s argument [Reference BeauvilleBe83-2, proof of Proposition 10].
 Let  $T_{Y}$ be the tangent bundle of
$T_{Y}$ be the tangent bundle of  $Y$. Then, one can take
$Y$. Then, one can take  ${\mathcal{K}}$ as a small polydisk in
${\mathcal{K}}$ as a small polydisk in  $H^{1}(Y,T_{Y})$ with center
$H^{1}(Y,T_{Y})$ with center  $0$. As
$0$. As  $\unicode[STIX]{x1D714}_{Y}$ is everywhere nondegenerate, we have an isomorphism
$\unicode[STIX]{x1D714}_{Y}$ is everywhere nondegenerate, we have an isomorphism 
 $$\begin{eqnarray}H^{1}(Y,T_{Y})\simeq H^{1}(X,\unicode[STIX]{x1D6FA}_{Y}^{1})\end{eqnarray}$$
$$\begin{eqnarray}H^{1}(Y,T_{Y})\simeq H^{1}(X,\unicode[STIX]{x1D6FA}_{Y}^{1})\end{eqnarray}$$induced by the isomorphism
 $$\begin{eqnarray}T_{Y}\simeq \unicode[STIX]{x1D6FA}_{Y}^{1}=T_{Y}^{\ast }:v\mapsto \unicode[STIX]{x1D714}_{Y}(v,\ast ).\end{eqnarray}$$
$$\begin{eqnarray}T_{Y}\simeq \unicode[STIX]{x1D6FA}_{Y}^{1}=T_{Y}^{\ast }:v\mapsto \unicode[STIX]{x1D714}_{Y}(v,\ast ).\end{eqnarray}$$ As  $g$ is cohomologically trivial and
$g$ is cohomologically trivial and  $H^{2,0}(Y)=H^{0}(Y,\unicode[STIX]{x1D6FA}_{Y}^{2})=\mathbb{C}\unicode[STIX]{x1D714}_{Y}$, we have
$H^{2,0}(Y)=H^{0}(Y,\unicode[STIX]{x1D6FA}_{Y}^{2})=\mathbb{C}\unicode[STIX]{x1D714}_{Y}$, we have  $g^{\ast }\unicode[STIX]{x1D714}_{Y}=\unicode[STIX]{x1D714}_{Y}$ and
$g^{\ast }\unicode[STIX]{x1D714}_{Y}=\unicode[STIX]{x1D714}_{Y}$ and  $g^{\ast }|_{H^{1}(Y,\unicode[STIX]{x1D6FA}_{Y}^{1})}=\text{id}$. Hence by the isomorphism above, we obtain
$g^{\ast }|_{H^{1}(Y,\unicode[STIX]{x1D6FA}_{Y}^{1})}=\text{id}$. Hence by the isomorphism above, we obtain  $g^{\ast }|_{H^{1}(Y,T_{Y})}=\text{id}$, and therefore,
$g^{\ast }|_{H^{1}(Y,T_{Y})}=\text{id}$, and therefore,  $\overline{g}=\text{id}_{{\mathcal{K}}}$.
$\overline{g}=\text{id}_{{\mathcal{K}}}$.
 Let  $t\in {\mathcal{K}}$ be any point of
$t\in {\mathcal{K}}$ be any point of  ${\mathcal{K}}$. Then, by
${\mathcal{K}}$. Then, by  $\overline{g}=\text{id}_{{\mathcal{K}}}$, the morphism
$\overline{g}=\text{id}_{{\mathcal{K}}}$, the morphism  $\tilde{g}$ preserves the fiber
$\tilde{g}$ preserves the fiber  $Y_{t}=u^{-1}(t)$, that is,
$Y_{t}=u^{-1}(t)$, that is, 
 $$\begin{eqnarray}\tilde{g}|_{Y_{t}}\in \text{Aut}(Y_{t}).\end{eqnarray}$$
$$\begin{eqnarray}\tilde{g}|_{Y_{t}}\in \text{Aut}(Y_{t}).\end{eqnarray}$$ Put  $g_{t}:=\tilde{g}|_{Y_{t}}$. Then
$g_{t}:=\tilde{g}|_{Y_{t}}$. Then  $g_{t}$ is also cohomologically trivial, because
$g_{t}$ is also cohomologically trivial, because  $g_{t}^{\ast }|_{H^{\ast }(Y_{t},\mathbb{Z})}$ is derived from the action of
$g_{t}^{\ast }|_{H^{\ast }(Y_{t},\mathbb{Z})}$ is derived from the action of  $\tilde{g}$ on the constant system
$\tilde{g}$ on the constant system  $\bigoplus _{k=0}^{4(n-1)}R^{k}u_{\ast }\mathbb{Z}$. Then
$\bigoplus _{k=0}^{4(n-1)}R^{k}u_{\ast }\mathbb{Z}$. Then  $g_{t}=\text{id}_{Y_{t}}$ for all
$g_{t}=\text{id}_{Y_{t}}$ for all  $t\in {\mathcal{K}}^{\prime }$, as we already proved Theorem 1.3 for
$t\in {\mathcal{K}}^{\prime }$, as we already proved Theorem 1.3 for  $K_{n-1}(A)$ in Section 3. Since
$K_{n-1}(A)$ in Section 3. Since  ${\mathcal{U}}$ is Hausdorff and
${\mathcal{U}}$ is Hausdorff and  $\tilde{g}$ is continuous, it follows that
$\tilde{g}$ is continuous, it follows that  $\tilde{g}=\text{id}_{{\mathcal{U}}}$. Hence
$\tilde{g}=\text{id}_{{\mathcal{U}}}$. Hence  $g=g_{0}=\text{id}_{Y}$ as well. This completes the proof of Theorem 1.3.
$g=g_{0}=\text{id}_{Y}$ as well. This completes the proof of Theorem 1.3.
5 A few concluding remarks
In this section, we remark a few relevant facts, which should be known to some experts.
 Our first remark is about an analogue of Theorem 1.3 for a hyper-Kähler manifold deformation equivalent to the Hilbert scheme  $\text{Hilb}^{n}(S)$ of a K3 surface
$\text{Hilb}^{n}(S)$ of a K3 surface  $S$.
$S$.
 Markman and Mehrotra [Reference Markman and MehrotraMM17, Theorem 1.1] also proved the strong density result for  $\text{Hilb}^{n}(S)$ of K3 surfaces
$\text{Hilb}^{n}(S)$ of K3 surfaces  $S$. So, the same argument as in Section 4 together with Beauville’s result (Theorem 1.1(1)) implies the following result due to Mongardi [Reference MongardiMo13, Lemma 1.2]:
$S$. So, the same argument as in Section 4 together with Beauville’s result (Theorem 1.1(1)) implies the following result due to Mongardi [Reference MongardiMo13, Lemma 1.2]:
Theorem 5.1. Let  $W$ be a hyper-Kähler manifold deformation equivalent to
$W$ be a hyper-Kähler manifold deformation equivalent to  $\text{Hilb}^{n}(S)$. Then, the action
$\text{Hilb}^{n}(S)$. Then, the action  $\unicode[STIX]{x1D70C}_{2}:\text{Aut}(W)\rightarrow \text{GL}(H^{2}(W,\mathbb{Z}))$ is faithful.
$\unicode[STIX]{x1D70C}_{2}:\text{Aut}(W)\rightarrow \text{GL}(H^{2}(W,\mathbb{Z}))$ is faithful.
Our second remark is about the fixed locus of symplectic automorphism of finite order.
 In Lemma 3.5, we described the fixed locus  $X^{a}$. Our description shows that
$X^{a}$. Our description shows that  $X^{a}$ is a disjoint union of smooth hyper-Kähler manifolds. However, this is not accidental:
$X^{a}$ is a disjoint union of smooth hyper-Kähler manifolds. However, this is not accidental:
Proposition 5.2. Let  $(M,\unicode[STIX]{x1D714}_{M})$ be a holomorphic symplectic manifold of dimension
$(M,\unicode[STIX]{x1D714}_{M})$ be a holomorphic symplectic manifold of dimension  $2d$, that is,
$2d$, that is,  $M$ is a compact Kähler manifold and
$M$ is a compact Kähler manifold and  $\unicode[STIX]{x1D714}_{M}$ is an everywhere nondegenerate holomorphic
$\unicode[STIX]{x1D714}_{M}$ is an everywhere nondegenerate holomorphic  $2$-form on
$2$-form on  $M$ (not necessarily unique up to
$M$ (not necessarily unique up to  $\mathbb{C}^{\times }$). Let
$\mathbb{C}^{\times }$). Let  $h\in \text{Aut}(M)$ such that
$h\in \text{Aut}(M)$ such that  $h^{\ast }\unicode[STIX]{x1D714}_{M}=\unicode[STIX]{x1D714}_{M}$ and
$h^{\ast }\unicode[STIX]{x1D714}_{M}=\unicode[STIX]{x1D714}_{M}$ and  $h$ is of finite order
$h$ is of finite order  $m$. Let
$m$. Let  $F$ be a connected component of the fixed locus
$F$ be a connected component of the fixed locus  $M^{h}=\{P\in M|h(P)=P\}$. Then
$M^{h}=\{P\in M|h(P)=P\}$. Then  $(F,\unicode[STIX]{x1D714}_{M}|_{F})$ is a holomorphic symplectic manifold (possibly a point).
$(F,\unicode[STIX]{x1D714}_{M}|_{F})$ is a holomorphic symplectic manifold (possibly a point).
Proof.  $F$ is isomorphic to the intersection of the graph of
$F$ is isomorphic to the intersection of the graph of  $h$ and the diagonal
$h$ and the diagonal  $\unicode[STIX]{x1D6E5}$ in
$\unicode[STIX]{x1D6E5}$ in  $M\times M$. So it is compact and Kähler, possibly singular. Let
$M\times M$. So it is compact and Kähler, possibly singular. Let  $P\in F$. Since
$P\in F$. Since  $h$ is of finite order,
$h$ is of finite order,  $h$ is locally linearizable at
$h$ is locally linearizable at  $P$ (see the proof of [Reference KatsuraKa84, Lemma 1.3]). That is, there are local coordinates
$P$ (see the proof of [Reference KatsuraKa84, Lemma 1.3]). That is, there are local coordinates  $(y_{1},y_{2},\ldots ,y_{2d})$ at
$(y_{1},y_{2},\ldots ,y_{2d})$ at  $P$ such that
$P$ such that 
 $$\begin{eqnarray}h^{\ast }y_{i}=y_{i}\;(1\leqslant \forall i\leqslant r),\qquad h^{\ast }y_{j}=c_{j}y_{j}\;(r+1\leqslant \forall j\leqslant 2d).\end{eqnarray}$$
$$\begin{eqnarray}h^{\ast }y_{i}=y_{i}\;(1\leqslant \forall i\leqslant r),\qquad h^{\ast }y_{j}=c_{j}y_{j}\;(r+1\leqslant \forall j\leqslant 2d).\end{eqnarray}$$ Here  $c_{j}\not =1$ and satisfies
$c_{j}\not =1$ and satisfies  $c_{j}^{m}=1$. Then
$c_{j}^{m}=1$. Then  $F$ is locally defined by
$F$ is locally defined by  $y_{j}=0$ (
$y_{j}=0$ ( $r+1\leqslant j\leqslant 2d$) in
$r+1\leqslant j\leqslant 2d$) in  $M$. Hence
$M$. Hence  $F$ is smooth. Consider the linear differential map
$F$ is smooth. Consider the linear differential map 
 $$\begin{eqnarray}dh_{P}:T_{M,P}\rightarrow T_{M,P}\end{eqnarray}$$
$$\begin{eqnarray}dh_{P}:T_{M,P}\rightarrow T_{M,P}\end{eqnarray}$$ of the tangent space  $T_{M,P}$ of
$T_{M,P}$ of  $M$ at
$M$ at  $P$. By Equation (5.1), we have the decomposition
$P$. By Equation (5.1), we have the decomposition 
 $$\begin{eqnarray}T_{M,P}=T_{F,P}\oplus N.\end{eqnarray}$$
$$\begin{eqnarray}T_{M,P}=T_{F,P}\oplus N.\end{eqnarray}$$ Here,  $N=\bigoplus _{j=r+1}^{2d}\mathbb{C}v_{j}$ for some
$N=\bigoplus _{j=r+1}^{2d}\mathbb{C}v_{j}$ for some  $v_{j}$ (
$v_{j}$ ( $r+1\leqslant j\leqslant 2d$) such that
$r+1\leqslant j\leqslant 2d$) such that  $dh_{P}(v_{j})=c_{j}^{-1}v_{j}$ and the tangent space
$dh_{P}(v_{j})=c_{j}^{-1}v_{j}$ and the tangent space  $T_{F,P}$ of
$T_{F,P}$ of  $F$ at
$F$ at  $P$ is exactly the invariant subspace
$P$ is exactly the invariant subspace  $(T_{M,P})^{dh_{P}}$. Using
$(T_{M,P})^{dh_{P}}$. Using  $h^{\ast }\unicode[STIX]{x1D714}_{M}=\unicode[STIX]{x1D714}_{M}$, we deduce that
$h^{\ast }\unicode[STIX]{x1D714}_{M}=\unicode[STIX]{x1D714}_{M}$, we deduce that 
 $$\begin{eqnarray}\unicode[STIX]{x1D714}_{M,P}(v,v_{j})=\unicode[STIX]{x1D714}_{M,P}(dh_{P}(v),dh_{P}(v_{j}))=\unicode[STIX]{x1D714}_{M,P}(v,c_{j}^{-1}v_{j})=c_{j}^{-1}\unicode[STIX]{x1D714}_{M,P}(v,v_{j}),\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D714}_{M,P}(v,v_{j})=\unicode[STIX]{x1D714}_{M,P}(dh_{P}(v),dh_{P}(v_{j}))=\unicode[STIX]{x1D714}_{M,P}(v,c_{j}^{-1}v_{j})=c_{j}^{-1}\unicode[STIX]{x1D714}_{M,P}(v,v_{j}),\end{eqnarray}$$ for any  $v\in T_{F,P}$ and
$v\in T_{F,P}$ and  $v_{j}$ (
$v_{j}$ ( $r+1\leqslant j\leqslant 2d$). As
$r+1\leqslant j\leqslant 2d$). As  $c_{j}\not =1$, it follows that
$c_{j}\not =1$, it follows that 
 $$\begin{eqnarray}\unicode[STIX]{x1D714}_{M,P}(v,v_{j})=0\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D714}_{M,P}(v,v_{j})=0\end{eqnarray}$$ for all  $v\in T_{F,P}$ and
$v\in T_{F,P}$ and  $v_{j}$ with
$v_{j}$ with  $r+1\leqslant j\leqslant 2d$. Hence, the decomposition (5.2) is orthogonal with respect to
$r+1\leqslant j\leqslant 2d$. Hence, the decomposition (5.2) is orthogonal with respect to  $\unicode[STIX]{x1D714}_{M,P}$. As
$\unicode[STIX]{x1D714}_{M,P}$. As  $\unicode[STIX]{x1D714}_{M,P}$ is nondegenerate, it follows from the orthogonality of the decomposition that
$\unicode[STIX]{x1D714}_{M,P}$ is nondegenerate, it follows from the orthogonality of the decomposition that  $\unicode[STIX]{x1D714}_{M,P}|_{T_{F,P}}$ is also nondegenerate on
$\unicode[STIX]{x1D714}_{M,P}|_{T_{F,P}}$ is also nondegenerate on  $T_{F,P}$ (possibly
$T_{F,P}$ (possibly  $\{0\}$). Hence
$\{0\}$). Hence  $(F,\unicode[STIX]{x1D714}|_{F})$ is a smooth symplectic manifold (possibly a point) as well. This completes the proof of Proposition 5.2.◻
$(F,\unicode[STIX]{x1D714}|_{F})$ is a smooth symplectic manifold (possibly a point) as well. This completes the proof of Proposition 5.2.◻
Remark 5.3. Proposition 5.2 is a formal generalization of a result of Camere [Reference CamereCa12, Proposition 3] for a symplectic involution.
Acknowledgments
I would like to express my thanks to Professor D. McDuff for her inspiring question, to Professor N. Sibony for invitation to the conference at Banff (July 2012), and Professor Y. Tschinkel for his interest in this work and valuable information about a paper [Reference Hassett and TschinkelHT13]. I would also like to express my thanks to Professor I. Dolgachev for valuable comments in the first version (in 2012) and for reminding me of this paper in his opening talk at the international conference celebrating Professor S. Kondō’s sixtieth birthday held at Nagoya on December 2017. I would also like to express my thanks to the referee for his/her careful reading.
 
 











