Skip to main content Accessibility help
×
Home

On Continuous Isomorphisms of Topological Groups

  • Morikuni Gotô (a1) and Hidehiko Yamabe (a1)

Extract

Let G be a locally compact connected group, and let A (G) be the group of all continuous automorphisms of G. We shall introduce a natural topology into A(G) as previously (i.e. the topology of uniform convergence in the wider sense.) When the component of the identity of A(G) coincides with the group of inner automorphisms, we shall call G complete. The purpose of this note is to prove the following theorem and give some applications of it.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On Continuous Isomorphisms of Topological Groups
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On Continuous Isomorphisms of Topological Groups
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On Continuous Isomorphisms of Topological Groups
      Available formats
      ×

Copyright

References

Hide All

1) See e.g. Nomizu, K. and Goto, M., “On the group of automorphisms of a topological group,” forthcoming in Tôhoku Math. Journ.

2) See Goto, M., “Faithful representations of Lie groups I,” Mathematica Japonicae, Vol. 1, No. 3, (1949). Referred to as F.R.

3) For the definitions and the structures of (L)-groups, see Iwasawa, K., “On some types of topological groups,” Ann. of Math., Vol. 50 (1949).

4) See F. R. Lemma 4.

5) For the definitions etc. of semi-simple (L)-groups, see M. Goto: “Linear representations of topological groups,” forthcoming in Proc. Amer, Math, Soc.

6) See F. R. Theorem 2.

7) A locally compact group G contains the uniquely determined maximal connected solvable invariant subgroup R, which is closed in G, Following Iwasawa loc. cit., we shall call R the radical of G.

8) On decompositions of (L)-groups as such, see Y. Matsushima, “On the decomposition of an (L)-group,” forthcoming in Journ. of Math, Soc. Japan.

9) See Iwasawa, loc. cit.

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

On Continuous Isomorphisms of Topological Groups

  • Morikuni Gotô (a1) and Hidehiko Yamabe (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed