[1]
Ahangari Maleki, R. and Rossi, M. E.,
*Regularity and linearity defect of modules over local rings*
, J. Commut. Algebra
6(4) (2014), 485–504.

[2]
Avramov, L. L.,
*Small homomorphisms of local rings*
, J. Algebra
50 (1978), 400–453.

[3]
Brodmann, M.,
*The asymptotic nature of the analytic spread*
, Math. Proc. Cambridge Philos. Soc.
86(1) (1979), 35–39.

[4]
Bruns, W. and Herzog, J., Cohen–Macaulay Rings. Rev. Ed., Cambridge Stud. Adv. Math. **39**
, Cambridge University Press, Cambridge, 1998.

[5]
Chardin, M.,
*Powers of ideals and the cohomology of stalks and fibers of morphisms*
, Algebra Number Theory
7(1) (2013), 1–18.

[6]
Conca, A., Iyengar, S. B., Nguyen, H. D. and Römer, T.,
*Absolutely Koszul algebras and the Backelin–Roos property*
, Acta Math. Vietnam.
40 (2015), 353–374.

[7]
Cutkosky, S. D., Herzog, J. and Trung, N. V.,
*Asymptotic behaviour of the Castelnuovo–Mumford regularity*
, Compos. Math.
118(3) (1999), 243–261.

[8]
Eisenbud, D., Commutative Algebra. With a View toward Algebraic Geometry, Grad. Texts in Math. **150**
, Springer, New York, 1995.

[9]
Eisenbud, D., Fløystad, G. and Schreyer, F.-O.,
*Sheaf cohomology and free resolutions over exterior algebras*
, Trans. Amer. Math. Soc.
355 (2003), 4397–4426.

[11]
Harbourne, B. and Seceleanu, A.,
*Containment counterexamples for ideals of various configurations of points in ℙ*^{
N
}
, J. Pure Appl. Algebra
219 (2015), 1062–1072.

[12]
Herzog, J. and Hibi, T.,
*Componentwise linear ideals*
, Nagoya Math. J.
153 (1999), 141–153.

[13]
Herzog, J. and Hibi, T.,
*The depth of powers of an ideal*
, J. Algebra
291(2) (2005), 534–550.

[14]
Herzog, J., Hibi, T. and Ohsugi, H., Powers of Componentwise Linear Ideals, Abel Symp. **6**
, Springer, Berlin, 2011.

[15]
Herzog, J. and Iyengar, S. B.,
*Koszul modules*
, J. Pure Appl. Algebra
201 (2005), 154–188.

[16]
Herzog, J., Welker, V. and Yassemi, S.,
*Homology of powers of ideals: Artin-Rees numbers of syzygies and the Golod property*
, Algebra Colloq.
23(4) (2016), 689–700.

[17]
Huneke, C.,
*The theory of **d*-sequence and powers of ideals
, Adv. Math.
46(3) (1982), 249–279.

[18]
Huneke, C. and Swanson, I., Integral Closure of Ideals, Rings and Modules, London Math. Soc. Lecture Note Ser. **336**
, Cambridge University Press, Cambridge, 2006.

[19]
Iyengar, S. B. and Römer, T.,
*Linearity defects of modules over commutative rings*
, J. Algebra
322 (2009), 3212–3237.

[20]
Nagel, U. and Seceleanu, A.,
*Ordinary and symbolic Rees algebras for ideals of Fermat point configurations*
, J. Algebra
468 (2016), 80–102.

[21]
Okazaki, R. and Yanagawa, K.,
*Linearity defect of face rings*
, J. Algebra
314 (2007), 362–382.

[22]
Römer, T., *On minimal graded free resolutions*, Ph.D. dissertation, University of Essen, Germany, 2001.

[23]
Şega, L. M.,
*On the linearity defect of the residue field*
, J. Algebra
384 (2013), 276–290.

[24]
Yanagawa, K.,
*Linearity defect and regularity over a Koszul algebra*
, Math. Scand.
104(2) (2009), 205–220.