Skip to main content Accessibility help
×
Home

ON THE CONJECTURE OF VASCONCELOS FOR ARTINIAN ALMOST COMPLETE INTERSECTION MONOMIAL IDEALS

  • KUEI-NUAN LIN (a1) and YI-HUANG SHEN (a2)

Abstract

In this short note, we confirm a conjecture of Vasconcelos which states that the Rees algebra of any Artinian almost complete intersection monomial ideal is almost Cohen–Macaulay.

Copyright

References

Hide All
[1]Burity, R., Simis, A. and Tohǎneanu, S. O., On a conjecture of Vasconcelos via Sylvester forms, J. Symbolic Comput. 77 (2016), 3962.
[2]Cortadellas Benítez, T. and D’Andrea, C., The Rees algebra of a monomial plane parametrization, J. Symbolic Comput. 70 (2015), 71105.
[3]Cox, D. A., Lin, K.-N. and Sosa, G., Multi-Rees Algebras and Toric Dynamical Systems, Proc. Amer. Math. Soc. 147 (2019), 46054616.
[4]Cox, D. A., The moving curve ideal and the Rees algebra, Theoret. Comput. Sci. 392 (2008), 2336.
[5]Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, 2018, available at http://www.math.uiuc.edu/Macaulay2/.
[6]Herzog, J. and Hibi, T., Monomial Ideals, Graduate Texts in Mathematics 260, Springer, London, 2011.
[7]Herzog, J., Simis, A. and Vasconcelos, W. V., “Koszul homology and blowing-up rings”, in Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Applied Mathematics 84, Dekker, New York, 1983, 79169.
[8]Hong, J., Simis, A. and Vasconcelos, W. V., The equations of almost complete intersections, Bull. Braz. Math. Soc. (N.S.) 43 (2012), 171199.
[9]Hong, J., Simis, A. and Vasconcelos, W. V., Extremal Rees algebras, J. Commut. Algebra 5 (2013), 231267.
[10]Huneke, C., On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268275.
[11]Kustin, A. R., Polini, C. and Ulrich, B., Rational normal scrolls and the defining equations of Rees algebras, J. Reine Angew. Math. 650 (2011), 2365.
[12]Lin, K.-N. and Shen, Y.-H., Koszul blowup algebras associated to three-dimensional Ferrers diagrams, J. Algebra 514 (2018), 219253.
[13]Lin, K.-N. and Shen, Y.-H., Regularity and multiplicity of toric rings of three-dimensional Ferrers diagrams, available at arXiv:1809.08351.
[14]Rossi, M. E. and Swanson, I., “Notes on the behavior of the Ratliff-Rush filtration”, in Commutative Algebra, Grenoble/Lyon, 2001, Contemporary Mathematics, 331, American Mathematical Society, Providence, RI, 2003, 313328.
[15]Rossi, M. E., Trung, D. T. and Trung, N. V., Castelnuovo-Mumford regularity and Ratliff-Rush closure, J.  Algebra 504 (2018), 568586.
[16]Simis, A. and Tohǎneanu, S. O., The ubiquity of Sylvester forms in almost complete intersections, Collect. Math. 66 (2015), 131.
[17]Sturmfels, B., Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Mathematical Society, Providence, RI, 1996.
[18]Taylor, D. K., Ideals generated by monomials in an R-sequence, Ph.D. thesis, The University of Chicago. ProQuest LLC, Ann Arbor, MI, 1966.
[19]Vasconcelos, W. V., Integral Closure, Springer Monographs in Mathematics, Springer, Berlin, 2005.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

ON THE CONJECTURE OF VASCONCELOS FOR ARTINIAN ALMOST COMPLETE INTERSECTION MONOMIAL IDEALS

  • KUEI-NUAN LIN (a1) and YI-HUANG SHEN (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed