[1]
Berndt, B. C.,
*Two new proofs of Lerch’s functional equation*
, Proc. Amer. Math. Soc.
32 (1972), 403–408.

[3]
Carletti, E., Monti Bragadin, G. and Perelli, A.,
*A note on Hecke’s functional equation and the Selberg class*
, Funct. Approx.
41 (2009), 211–220.

[4]
Conrey, J. B. and Ghosh, A.,
*On the Selberg class of Dirichlet series: small degrees*
, Duke Math. J.
72 (1993), 673–693.

[5]
Iwaniec, H., Topics in Classical Automorphic Forms, AMS Publications, 1997.

[6]
Kaczorowski, J.,
*Some remarks on Fourier coefficients of Hecke modular functions*
, Comment. Math. (2004), 105–121; special volume *in honorem* J. Musielk.

[7]
Kaczorowski, J., “
*Axiomatic theory of **L*-functions: the Selberg class
”, in Analytic Number Theory, Springer Lecture Notes in Mathematics **1891**
, (eds. Perelli, A. and Viola, C.) C.I.M.E. Summer School, Cetraro (Italy), 2006, 133–209.

[8]
Kaczorowski, J., Molteni, G., Perelli, A., Steuding, J. and Wolfart, J.,
*Hecke’s theory and the Selberg class*
, Funct. Approx.
35 (2006), 183–193.

[9]
Kaczorowski, J. and Perelli, A.,
*On the structure of the Selberg class, I: 0⩽**d*⩽1
, Acta Math.
182 (1999), 207–241.

[10]
Kaczorowski, J. and Perelli, A., “
*The Selberg class: a survey*
”, in Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel, (eds. Györy, K.
et al. ) de Gruyter, 1999, 953–992.

[11]
Kaczorowski, J. and Perelli, A.,
*On the structure of the Selberg class, VI: non-linear twists*
, Acta Arith.
116 (2005), 315–341.

[12]
Kaczorowski, J. and Perelli, A.,
*On the structure of the Selberg class, VII: 1 < **d* < 2
, Ann. of Math. (2)
173 (2011), 1397–1441.

[13]
Kaczorowski, J. and Perelli, A., “
*Internal twists of **L*-functions
”, in Number Theory, Analysis, and Combinatorics, (eds. Pintz, J.
et al. ) de Gruyter, 2014, 145–154.

[14]
Kaczorowski, J. and Perelli, A.,
*Twists and resonance of **L*-functions, I
, J. Eur. Math. Soc. (JEMS)
18 (2016), 1349–1389.

[15]
Kaczorowski, J. and Perelli, A.,
*Some remarks on the convergence of the Dirichlet series of **L*-functions and related questions
, Math. Z.
285 (2017), 1345–1355.

[16]
Kaczorowski, J. and Perelli, A.,
*A note on Linnik’s approach to the Dirichlet **L*-functions
, Tr. Mat. Inst. Steklova
296 (2017), 123–132; (Russian); English transl. Proc. Steklov Inst. Math. **296** (2017), 115–124.

[17]
Kaczorowski, J. and Perelli, A., *Introduction to the Selberg Class of*
-*Functions*, in preparation.

[18]
Miyake, T., Modular Forms, Springer, 1989.

[19]
Ogg, A., Modular Forms and Dirichlet Series, Benjamin, 1969.

[20]
Paris, R. B. and Kaminski, D., Asymptotics and Mellin–Barnes Integrals, Cambridge University Press, 2001.

[21]
Perelli, A.,
*A survey of the Selberg class of **L*-functions, part I
, Milan J. Math.
73 (2005), 19–52.

[22]
Perelli, A.,
*A survey of the Selberg class of **L*-functions, part II
, Riv. Mat. Univ. Parma (7)
3* (2004), 83–118.

[23]
Perelli, A.,
*Non-linear twists of **L*-functions: a survey
, Milan J. Math.
78 (2010), 117–134.

[24]
Perelli, A.,
*Converse theorems: from the Riemann zeta function to the Selberg class*
, Boll. Unione Mat. Ital.
10 (2017), 29–53.

[25]
Selberg, A., “
*Old and new conjectures and results about a class of Dirichlet series*
”, in Proc. Amalfi Conf. Analytic Number Theory, Università di Salerno 1992; *Collected Papers*, vol. II, (eds. Bombieri, E.
et al. ) Springer, 1991, 47–63.

[26]
Titchmarsh, E. C., The Theory of Functions, 2nd ed., Oxford University Press, 1939.