Skip to main content Accessibility help
×
Home

RANKIN–SELBERG CONVOLUTIONS OF NONCUSPIDAL HALF-INTEGRAL WEIGHT MAASS FORMS IN THE PLUS SPACE

  • YOSHINORI MIZUNO (a1)

Abstract

The author gives the analytic properties of the Rankin–Selberg convolutions of two half-integral weight Maass forms in the plus space. Applications to the Koecher–Maass series associated with nonholomorphic Siegel–Eisenstein series are given.

Copyright

References

Hide All
[1] Arakawa, T., Dirichlet series related to the Eisenstein series on the Siegel upper half-plane , Comment. Math. Univ. St. Pauli 27(1) (1978), 2942.
[2] Arakawa, T., Ibukiyama, T. and Kaneko, M., Bernoulli Numbers and Zeta Functions, Springer Monographs in Mathematics, Springer, Tokyo, 2014, xii+274 pp. With an appendix by Don Zagier.
[3] Böcherer, S., Bemerkungen über die Dirichletreihen von Koecher und Maass , Mathematica Göttingensis, Schriftenreihe des SFB Geometrie und Analysis, Heft 68 (1986), 36.
[4] Biro, A., A relation between triple products of weight 0 and weight 1/2 cusp forms , Israel J. Math. 182 (2011), 61101.
[5] Chinta, G., Friedberg, S. and Hoffstein, J., “ Multiple Dirichlet series and automorphic forms ”, in Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, Proc. Sympos. Pure Math. 75 , American Mathematical Society, Providence, RI, 2006, 341.
[6] Chinta, G. and Gunnells, P., Weyl group multiple Dirichlet series constructed from quadratic characters , Invent. Math. 167(2) (2007), 327353.
[7] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters , Math. Ann. 217 (1975), 271285.
[8] Diamantis, N. and Goldfeld, D., A converse theorem for double Dirichlet series and Shintani zeta functions , J. Math. Soc. Japan 66(2) (2014), 449477.
[9] Duke, W. and Imamoḡlu, Ö., A converse theorem and the Saito–Kurokawa lift , Int. Math. Res. Not. IMRN (7) (1996), 347355.
[10] Goldfeld, D. and Hoffstein, J., Eisenstein series of 1/2-integral weight and the mean value of real Dirichlet L-series , Invent. Math. 80(2) (1985), 185208.
[11] Hashim, A. and Ram Murty, M., On Zagier’s cusp form and the Ramanujan 𝜏 function , Proc. Indian Acad. Sci. Math. Sci. 104(1) (1994), 9398.
[12] Ibukiyama, T. and Katsurada, H., “ Koecher–Maass series for real analytic Siegel Eisenstein series ”, in Automorphic Forms and Zeta Functions, Proceedings of the conference in memory of Tsuneo Arakawa, World Scientific, Hackensack, NJ, USA, 2006, 170197.
[13] Ibukiyama, T. and Saito, H., On zeta functions associated to symmetric matrices, II: functional equations and special values , Nagoya Math. J. 208 (2012), 265316.
[14] Katok, S. and Sarnak, P., Heegner points, cycles and Maass forms , Israel J. Math. 84(1–2) (1993), 193227.
[15] Kaufhold, G., Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades , Math. Ann. 137 (1959), 454476.
[16] Lebedev, N., Special Functions and their Applications, Revised edition (ed. Silverman, R. A.) Dover Publications, Inc., New York, 1972, xii+308 pp. translated from the Russian. Unabridged and corrected republication.
[17] Kohama, H. and Mizuno, Y., Kernel functions of the twisted symmetric square of elliptic modular forms , Mathematika 64 (2018), 184210.
[18] Luo, W., Rudnick, Z. and Sarnak, P., The variance of arithmetic measures associated to closed geodesics on the modular surface , J. Mod. Dyn. 3(2) (2009), 271309.
[19] Maass, H., Konstruktion ganzer Modulformen halbzahliger Dimension mit V-Multiplikatoren in einer und zwei Variablen , Abhandlungen aus dem Mathematischen Seminar der Hansischen Universitat 12 (1937), 133162.
[20] Maass, H., Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Mathematics. 216 , Springer, Berlin–New York, 1971, v+328 pp.
[21] Matthes, R., Rankin–Selberg method for real analytic cusp forms of arbitrary real weight , Math. Z. 211(1) (1992), 155172.
[22] Miyake, T., Modular Forms, x+335 pp. Springer, Berlin, 1989.
[23] Mizuno, Y., The Rankin–Selberg convolution for real analytic Cohen’s Eisenstein series of half integral weight , J. Lond. Math. Soc. (2) 78 (2008), 183197.
[24] Mizuno, Y., Koecher–Maass series for positive definite Fourier coefficients of real analytic Siegel–Eisenstein series of degree 2 , Bull. Lond. Math. Soc. 41 (2009), 10171028.
[25] Mizuno, Y., Dirichlet series associated with square of class numbers of binary quadratic forms , Math. Z. 272(3–4) (2012), 11151135.
[26] Mizuno, Y., On characterization of Siegel cusp forms of degree 2 by the Hecke bound , Mathematika 61(1) (2015), 89100.
[27] Müller, W., The Rankin–Selberg method for non-holomorphic automorphic forms , J. Number Theory 51(1) (1995), 4886.
[28] Narkiewicz, W., Number Theory, xii, 371 p World Scientific, Singapore, 1983, Transl. from the Polish by S. Kanemitsu.
[29] Pitale, A., Jacobi Maass forms , Abh. Math. Semin. Univ. Hambg. 79(1) (2009), 87111.
[30] Rademacher, H., On the Phragmén–Lindelöf theorem and some applications , Math. Z. 72 (1959/1960), 192204.
[31] Sato, F., Zeta functions of (SL2 × SL2 × GL2, M 2M 2) associated with a pair of Maass cusp forms , Comment. Math. Univ. St. Pauli 55(1) (2006), 7795.
[32] Shimura, G., On modular forms of half integral weight , Ann. of Math. (2) 97 (1973), 440481.
[33] Shimura, G., On the holomorphy of certain Dirichlet series , Proc. Lond. Math. Soc. (3) 31(1) (1975), 7998.
[34] Shimura, G., Elementary Dirichlet Series and Modular Forms, Springer Monographs in Mathematics, Springer, New York, 2007, viii+147 pp. ISBN: 978-0-387-72473-7.
[35] Siegel, C., Die Funktionalgleichungen einiger Dirichletscher Reihen , Math. Z. 63 (1956), 363373.
[36] Siegel, C., Advanced Analytic Number Theory, Second edition, Tata Institute of Fundamental Research Studies in Mathematics. 9 , v+268 pp. Tata Institute of Fundamental Research, Bombay, 1980.
[37] Suzuki, T., Distributions with automorphy and Dirichlet series , Nagoya Math. J. 73 (1979), 157169.
[38] Sturm, J., Special values of zeta functions, and Eisenstein series of half integral weight , Amer. J. Math. 102(2) (1980), 219240.
[39] Wen, J., Shintani zeta functions and Weyl group multiple Dirichlet series. Thesis (Ph.D.) State University of New York at Stony Brook. 2014. 64 pp. ISBN: 978-1321-11773-8 (See also arXiv:1311.2132, Bhargava Integer Cubes and Weyl Group Multiple Dirichlet Series).
[40] Zagier, D., Nombres de classes et formes modulaires de poids 3/2 , C. R. Acad. Sci. Paris Ser. A-B 281(21, Ai) (1975), A883A886.
[41] Zagier, D., “ Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields ”, in Modular Functions of One Variable VI, Lecture Notes in Mathematics. 627 , Springer, Berlin, 1977, 105169.
[42] Zagier, D., The Rankin–Selberg method for automorphic functions which are not of rapid decay , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 415437.
[43] Zagier, D., “ Eisenstein series and the Riemann zeta function ”, in Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math. 10 , Tata Inst. Fundamental Res., Bombay, 1981, 275301.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

RANKIN–SELBERG CONVOLUTIONS OF NONCUSPIDAL HALF-INTEGRAL WEIGHT MAASS FORMS IN THE PLUS SPACE

  • YOSHINORI MIZUNO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed