Skip to main content Accessibility help
×
×
Home

REFINED SWAN CONDUCTORS $\text{mod}~p$ OF ONE-DIMENSIONAL GALOIS REPRESENTATIONS

  • KAZUYA KATO (a1), ISABEL LEAL (a2) and TAKESHI SAITO (a3)

Abstract

For a character of the absolute Galois group of a complete discrete valuation field, we define a lifting of the refined Swan conductor, using higher dimensional class field theory.

Copyright

Footnotes

Hide All

One of the authors (K.K.) is partially supported by NSF Award 1601861 and (T.S.) is partially supported by JSPS Grant-in-Aid for Scientific Research (A) 26247002.

Footnotes

References

Hide All
[1] Abbes, A. and Saito, T., Ramification of local fields with imperfect residue fields , Amer. J. Math. 124 (2002), 879920.
[2] Abbes, A. and Saito, T., Analyse Micro-locale l-adique en caractéristique p > 0. Le cas d’un trait , RIMS, Kyoto Univ. 45 (2009), 2574.
[3] Barrientos, I., Log ramification via curves in rank 1 , Int. Math. Res. Not. IMRN 19 (2017), 57695799.
[4] Bhatt, B., Morrow, M. and Scholze, P., Topological Hochschild homology and integral $p$ -adic Hodge theory, preprint, 2018, arXiv:1802.03261.
[5] Borger, J. M., Conductors and the moduli of residual perfection , Math. Ann. 329 (2004), 130.
[6] Borger, J. M., Kato’s conductor and generic residual perfection, preprint, 2011, arXiv:0112306v2.
[7] Brylinski, J.-L., Théorie du corps de classes de Kato et revêtements abéliens de surfaces , Ann. Inst. Fourier (Grenoble) 33 (1983), 2338.
[8] Esnault, H. and Kerz, M., A finiteness theorem for Galois representations of function fields over finite fields (after Deligne) , Acta Math. Vietnam. 37 (2012), 531562.
[9] Fujiwara, K. and Kato, F., Foundations of Rigid Geometry. I, EMS Monographs in Mathematics, European Mathematical Society, Zurich, 2018.
[10] Garel, E., An extension of the trace map , J. Pure Appl. Algebra 32 (1984), 301313.
[11] Geisser, T. and Hesselholt, L., The de Rham–Witt complex and p-adic vanishing cycles , J. Amer. Math. Soc. 19 (2006), 136.
[12] Grothendieck, A., Élements de géométrie algébrique IV (première partie, quatrième partie) , Publ. Math. Inst. Hautes Études Sci. 20 (1964), 32 (1967).
[13] Hartshorne, R., Residue and Duality, Lecture Notes in Mathematics, 20 , Springer, Berlin, Heidelberg, New York, 1966.
[14] Hazewinkel, M., Corps de classes local, Appendix to Demazure M. and Gabriel M., Groupes algébriques, Tome I: Géométrie algébrique, généralités, groupes commutatifs (1970).
[15] Hu, H., Logarithmic ramifications of étale sheaves by restricting to curve, preprint, 2017, arXiv:1704.04734.
[16] Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline , Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 501661.
[17] Kato, K., A generalization of local class field theory by using K-groups. II , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 603683.
[18] Kato, K., A generalization of local class field theory by using K-groups. III , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 3134.
[19] Kato, K., Residue homomorphisms in Milnor K-theory , Adv. Stud. Pure Math. 2 (1983), 153172.
[20] Kato, K., Swan conductors for characters of degree one in the imperfect residue field case , Contemp. Math. 83 (1989), 101131.
[21] Kato, K., “ Logarithmic structures of Fontaine–Illusie ”, in Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 1989, 191224.
[22] Kato, K., “ Existence theorem for higher local fields ”, in Invitation to Higher Local Fields, Geometry and Topology Monographs, 3 , Mathematical Sciences Publisher, Berkeley, 2000, 165195.
[23] Kato, K. and Saito, S., Global class field theory of arithmetic schemes , Contemp. Math. 55 (1986), 255331.
[24] Kato, K. and Saito, T., Coincidence of two Swan conductors of abelian characters, preprint, 2019, arXiv:1904.08604.
[25] Kato, K. and Suzuki, T., Duality theories for $p$ -primary étale cohomology, III, J. Math. Sci. Univ. Tokyo (to appear).
[26] Kerz, M. and Saito, S, Chow group of 0-cycles with modulus and higher-dimensional class field theory , Duke Math. J. 165 (2016), 28112897.
[27] Kurihara, M., On two types of complete discrete valuation fields , Compositio Math. 63 (1987), 237257.
[28] Kurihara, M., The exponential homomorphisms for the Milnor K-groups and an explicit reciprocity law , J. Reine Angew. Math. 498 (1998), 201221.
[29] Leal, I., On ramification in transcendental extensions of local fields , J. Algebra 495 (2018), 1550.
[30] Matsuda, S., On the Swan conductor in positive characteristic , Amer. J. Math. 119 (1997), 705739.
[31] Parshin, A. N., Local class field theory , Trudy Mat. Inst. Steklov. 165 (1984), 143170.
[32] Raskind, W., Abelian Class Field Theory of Arithmetic Schemes, Proc. Sympos. Pure Math., 58, Part 1, American Mathematical Society, Providence, 1995, 85187.
[33] Serre, J.-P., Sur les corps locaux à corps résiduel algébriquement clos , Bull. Soc. Math. France 89 (1961), 105154.
[34] Wiesend, G., Class field theory for arithmetic schemes , Math. Z. 256 (2007), 717729.
[35] Yatagawa, Y., Equality of two non-logarithmic ramification filtrations of abelianized Galois group in positive characteristic , Documenta Math. 22 (2017), 917952.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed