[AN1]
Alexeev, V.A. and Nikulin, V.V., The classification of Del Pezzo surfaces with log terminal singularities of the index ≤ 2, involutions of K3 surfaces and reflection groups in Lobachevsky spaces (Russian), Doklady po matematike i prilogeniyam, MIAN, 2 (1988), no. 2, 51–150.
[AN2] V.Alexeev, A. and Nikulin, V.V., The classification of Del Pezzo surfaces with log terminal singularities of the index ≤ 2 and involutions of K3 surfaces, Dokl. AN SSSR, 306 (1989), no. 3, 525–528.
[B1]
Borcherds, R., Automorphic forms on O_{s+2},_{2} and infinite products, Invent. Math., 120 (1995), 161–213.
[B2]
Borcherds, R., The moduli space of Enriques surfaces and the fake monster Lie super- algebra, Topology, 35 (1996), no. 3, 699–710.
[CCL]
Cardoso, G.L., Curio, G. and Löst, D., Perturbative coupling and modular forms in N = 2 string models with a Wilson line, Nucl. Phys., B491 (1997), 147–183; hep-th/9608154.
[CD] F.Cossec, R. and Dolgachev, I.V., Enriques surfaces I, Birkhäuser, Progress in Mathematics, Vol. 76, 1989, pp. 397.
[D]
Dolgachev, I.V., On rational surfaces with elliptic pencil (Russian), Izv. AN SSSR, Ser. matem., 30 (1966), 1073–1100.
[E]
Esselmann, F., Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe, J. Number Theory, 61 (1996), 103–144.
[GN]
Gritsenko, V.A. and Nikulin, V.V., Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math., 119 (1997), no. 1, 181–224; alg-geom/9504006.
[GN2]
Gritsenko, V.A. and Nikulin, V.V., Siegel automorphic form correction of a Lorentzian Kac-Moody algebra, C. R. Acad. Sci. Paris Sér. A-B, 321 (1995), 1151–1156.
[GN3]
Gritsenko, V.A. and Nikulin, V.V., K3 surfaces, Lorentzian Kac-Moody algebras and mirror symmetry, Math. Res. Lett., 3 (1996), no. 2, 211–229; alg-geom/9510008.
[GN4]
Gritsenko, V.A. and Nikulin, V.V., The Igusa modular forms and “the simplest” Lorentzian Kac-Moody algebras, Matem. Sbornik, 187 (1996), no. 11, 27–66.
[GN5]
Gritsenko, V.A. and Nikulin, V.V., Automorphic forms and Lorentzian Kac-Moody algebras. Part I, Intern. J. Math., 9 (1998), no. 2, 153–199; alg-geom/9610022.
[GN6]
Gritsenko, V.A. and Nikulin, V.V., Automorphic forms and Lorentzian Kac-Moody algebras. Part II, Intern. J. Math., 9 (1998), no. 2, 201–275; alg-geom/9611028.
[GN7]
Gritsenko, V.A. and Nikulin, V.V., The arithmetic mirror symmetry and Calabi-Yau manifolds, Commun. Math., to appear; alg-geom/9612002.
[Hal]
Halphen, , Sur les courbes planes du sixiéme degré à neuf points doubles, Bull. Soc. math. France, 10 (1881), 162–172.
[Har]
Hartshorne, R., Algebraic Geometry, Springer, 1977, pp. 496.
[HM]
Harvey, J. and Moore, G., Algebras, BPS-states, and strings, Nucl. Physics., B463 (1996), 315–368; hep-th/9510182.
[Ka]
Kawai, T., String duality and modular forms, Phys. Lett., B397 (1997), 51–62; hep-th/9607078.
[Kaw]
Kawamata, Y., A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., 261 (1982), 43–46.
[Ko]
Kondo, S., Enriques surfaces with finite automorphism groups, Japanese J. Math., 12 (1986), no. 2, 191–282.
[L]
Lazarsfeld, R., Lectures on linear systems, Complex Algebraic Geometry (Kollar, J., eds.), Amer. Math. Soc. (IAS/Park City, Math. Series, Vol. 3) (1997).
[Ma]
Manin, Yu.I., Cubic forms: Algebra, Geometry, Arithmetic, Nauka, 1972.
[Mo]
Mori, S., Threefolds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982), no. 1, 133–176.
[Moo]
Moore, G., String duality, automorphic forms, and generalized Kac-Moody algebras, Preprint (1997; hep-th/9710198).
[Na]
Nagata, M., On rational surfaces I, II, Mem. of College of Sci. Univ. of Kyoto, Ser. A, 32 (1960), no, 3
351–370.
[N1]
Nikulin, V.V., Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111–177.
[N2]
Nikulin, V.V., On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections, Dokl. Akad. Nauk SSSR, 248 (1979), 1307–1309.
[N3]
Nikulin, V.V., On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by 2-reflections, Algebraic-geometric applications, Current Problems in Math. Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 18 (1981), 3–114.
[N4]
Nikulin, V.V., On arithmetic groups generated by reflections in Lobachevsky spaces, Math. USSR Izv., 16 (1981), 637–669.
[N5]
Nikulin, V.V., On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Math. USSR Izv., 18 (1982), 45 (1981), no. 1, 113–142.
[N6]
Nikulin, V.V., Surfaces of type K3 with finite automorphism group and Picard group of rank three, Trudy Inst. Steklov, 165 (1984), 113–142.
[N7]
Nikulin, V.V., On a description of the automorphism groups of Enriques surfaces, Dokl. AN SSSR, 277 (1984), 1324–1327.
[N8]
Nikulin, V.V., Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proc. Int. Congr. Math. Berkeley
1986, 1, pp. 654–669.
[N9]
Nikulin, V.V., Basis of the diagram method for generalized reflection groups in Lobachevsky spaces and algebraic surfaces with nef anticanonical class, Intern. J. of Math., 7 (1996), no. 1, 71–108.
[N10]
Nikulin, V.V., A lecture on Kac-Moody Lie algebras of the arithmetic type, Preprint Queen’s University, Canada, #1994-16, (1994).
[N11]
Nikulin, V.V., Reflection groups in Lobachevsky spaces and the denominator identity for Lorentzian Kac-Moody algebras, Izv. Akad. Nauk of Russia. Ser. Mat., 60 (1996), no. 2, 73–106.
[N12]
Nikulin, V.V., The remark on discriminants of K3 surfaces moduli as sets of zeros of automorphic forms, J. of Mathematical Sciences,, 81 (1996), no. 3, Plenum Publishing; alg-geom/9512018, 2738–2743.
[N13]
Nikulin, V.V., K3 surfaces with interesting groups of automorphisms, J. of Math. Sciences, to appear; alg-geom/9701011.
[N14]
Nikulin, V.V., On the classification of hyperbolic root systems of the rank three., Preprint Max-Planck-Institut für Mathematik,, MPI-99 (1999).
[O]
Ogg, A., Cohomology of abelian varieties over function fields, Ann. Math., 76 (1962), 185–212.
[P-ŠŠ]
Pjatetckiĭ-Šapiro, I.I. and Šafarevich, I.R., A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 530–572.
[R]
Reider, I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math., 127 (1988), 309–316.
[Sh1]
Šafarevič, I.R. (ed.), Algebraic surfaces, Proc. Steklov Math. Instit., 1965.
[Sh2]
Šafarevič, I.R. (ed.) Basic Algebraic Geometry, Nauka, 1988.
[Sh3]
Šafarevič, I.R. (ed.) Principal homogeneous spaces over function fields, Proc. Steklov Inst. Math., 64 (1961), 316–346.
[Vie]
Viehweg, E., Vanishing theorems, J. reine und angew. Math., 335 (1982), 1–8.
[V1]
Vinberg, E.B., The absence of crystallographic reflection groups in Lobachevsky spaces of large dimension, Trudy Moscow. Mat. Obshch., 47 (1984), 67–102.
[V2]
Vinberg, E.B., Hyperbolic reflection groups, Uspekhi Mat. Nauk, 40 (1985), 29–66.