Skip to main content Accessibility help
×
×
Home

SUR LA PRÉSERVATION DE LA COHÉRENCE PAR IMAGE INVERSE EXTRAORDINAIRE D’UNE IMMERSION FERMÉE

  • DANIEL CARO (a1)

Abstract

Let ${\mathcal{V}}$ be a complete discrete valuation ring of unequal characteristic with perfect residue field, $u:{\mathcal{Z}}{\hookrightarrow}\mathfrak{X}$ be a closed immersion of smooth, quasi-compact, separated formal schemes over ${\mathcal{V}}$ , $T$ be a divisor of $X$ such that $U:=T\cap Z$ is a divisor of $Z$ , and $\mathfrak{D}$ a strict normal crossing divisor of $\mathfrak{X}$ such that $u^{-1}(\mathfrak{D})$ is a strict normal crossing divisor of ${\mathcal{Z}}$ . We pose $\mathfrak{X}^{\sharp }:=(\mathfrak{X},\mathfrak{D})$ , ${\mathcal{Z}}^{\sharp }:=({\mathcal{Z}},u^{-1}\mathfrak{D})$ and $u^{\sharp }:{\mathcal{Z}}^{\sharp }{\hookrightarrow}\mathfrak{X}^{\sharp }$ the exact closed immersion of smooth logarithmic formal schemes over ${\mathcal{V}}$ . In Berthelot’s theory of arithmetic ${\mathcal{D}}$ -modules, we work with the inductive system of sheaves of rings $\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(\bullet )}(T):=(\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}(T))_{m\in \mathbb{N}}$ , where $\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}$ is the $p$ -adic completion of the ring of differential operators of level $m$ over $\mathfrak{X}^{\sharp }$ and where $T$ means that we add overconvergent singularities along the divisor $T$ . Moreover, Berthelot introduced the sheaf ${\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}}:=\underset{\underset{m}{\longrightarrow }}{\lim }\,\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}(T)\otimes _{\mathbb{Z}}\mathbb{Q}$ of differential operators over $\mathfrak{X}^{\sharp }$ of finite level with overconvergent singularities along $T$ . Let ${\mathcal{E}}^{(\bullet )}\in \underset{\displaystyle \longrightarrow }{LD}\text{}_{\mathbb{Q},\text{coh}}^{\text{b}}(\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(\bullet )}(T))$ and ${\mathcal{E}}:=\varinjlim ~({\mathcal{E}}^{(\bullet )})$ be the corresponding object of $D_{\text{coh}}^{\text{b}}({\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}})$ . In this paper, we study sufficient conditions on ${\mathcal{E}}$ so that if $u^{\sharp !}({\mathcal{E}})\in D_{\text{coh}}^{\text{b}}({\mathcal{D}}_{{\mathcal{Z}}^{\sharp }}^{\dagger }(\text{}^{\dagger }U)_{\mathbb{Q}})$ then $u^{\sharp (\bullet )!}({\mathcal{E}}^{(\bullet )})\in \underset{\displaystyle \longrightarrow }{LD}\text{}_{\mathbb{Q},\text{coh}}^{\text{b}}(\widehat{{\mathcal{D}}}_{{\mathcal{Z}}^{\sharp }}^{(\bullet )}(U))$ . For instance, we check that this is the case when ${\mathcal{E}}$ is a coherent ${\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}}$ -module such that the cohomological spaces of $u^{\sharp !}({\mathcal{E}})$ are isocrystals on ${\mathcal{Z}}^{\sharp }$ overconvergent along $U$ .

Copyright

References

Hide All
[AC18] Abe, T. and Caro, D., Theory of weights in p-adic cohomology , Amer. J. Math. 140(4) (2018), 879975.10.1353/ajm.2018.0021
[Ber96] Berthelot, P., -modules arithmétiques. I. Opérateurs différentiels de niveau fini , Ann. Sci. Éc. Norm. Supé (4) 29(2) (1996), 185272.10.24033/asens.1739
[Ber02] Berthelot, P., Introduction à la théorie arithmétique des D-modules , Astérisque 279 (2002), 180. Cohomologies $p$ -adiques et applications arithmétiques, II.
[BGR84] Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Springer, Berlin, 1984.10.1007/978-3-642-52229-1
[Car16] Caro, D., Systèmes inductifs cohérents de D-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques , Doc. Math. 21 (2016), 15151606.
[CT12] Caro, D. and Tsuzuki, N., Overholonomicity of overconvergent F-isocrystals over smooth varieties , Ann. of Math. (2) 176(2) (2012), 747813.10.4007/annals.2012.176.2.2
[Ful69] Fulton, W., A note on weakly complete algebras , Bull. Amer. Math. Soc. 75 (1969), 591593.10.1090/S0002-9904-1969-12250-0
[Mat89] Matsumura, H., Commutative Ring Theory, 2nd ed., Cambridge Studies in Advanced Mathematics, 8 , Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.
[Mon02] Montagnon, C., Généralisation de la théorie arithmétique des  ${\mathcal{D}}$ -modules à la géométrie logarithmique, Ph.D. thesis, Université de Rennes I, 2002.
[Sch02] Schneider, P., Nonarchimedean Functional Analysis, Springer Monographs in Mathematics, Springer, Berlin, 2002.10.1007/978-3-662-04728-6
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed