Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-03-03T16:24:36.276Z Has data issue: false hasContentIssue false

Tensor Product Structure of Affine Demazure Modules and Limit Constructions

Published online by Cambridge University Press:  11 January 2016

G. Fourier
Mathematisches Institut der Universität Köln, Weyertal 86-90, D-50931 Köln, Germany,
P. Littelmann
Mathematisches Institut der Universität Köln, Weyertal 86-90, D-50931 Köln, Germany,
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let g be a simple complex Lie algebra, we denote by ĝ the affine Kac-Moody algebra associated to the extended Dynkin diagram of g. Let Λ0 be the fundamental weight of ĝ corresponding to the additional node of the extended Dynkin diagram. For a dominant integral g-coweight λ, the Demazure submodule V_λ∨ (mΛ0) is a g-module. We provide a description of the g-module structure as a tensor product of “smaller” Demazure modules. More precisely, for any partition of λ = λ∑j as a sum of dominant integral g-coweights, the Demazure module is (as g-module) isomorphic to ⊗jV_ (mΛ0). For the “smallest” case, λ = ω a fundamental coweight, we provide for g of classical type a decomposition of V_ω∨(mΛ0) into irreducible g-modules, so this can be viewed as a natural generalization of the decomposition formulas in [13] and [16]. A comparison with the Uq(g)-characters of certain finite dimensional -modules (Kirillov-Reshetikhin-modules) suggests furthermore that all quantized Demazure modules V_λ∨,q(mΛ0) can be naturally endowed with the structure of a -module. We prove, in the classical case (and for a lot of non-classical cases), a conjecture by Kashiwara [10], that the “smallest” Demazure modules are, when viewed as g-modules, isomorphic to some KR-modules. For an integral dominant ĝ-weight Λ let V(Λ) be the corresponding irreducible ĝ-representation. Using the tensor product decomposition for Demazure modules, we give a description of the g-module structure of V(Λ) as a semi-infinite tensor product of finite dimensional g-modules. The case of twisted affine Kac-Moody algebras can be treated in the same way, some details are worked out in the last section.


Research Article
Copyright © Editorial Board of Nagoya Mathematical Journal 2006


[1] Bourbaki, N., Algèbre de Lie IV–VI, Hermann, Paris, 1968.Google Scholar
[2] Chari, V., On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices, 12 (2001), 629654.CrossRefGoogle Scholar
[3] Demazure, M., Une nouvelle formule de caractère, Bull. Sc. math., 98 (1974), 163172.Google Scholar
[4] Hatayama, G., Kuniba, A., Okado, M., Takagi, T. and Tsuboi, Z., Paths, crystals and fermionic formula, MathPhys Odyssey 2001: Integrable Models and Beyond In Hormor of Barry M. McCoy, Birkhäuser (2002), pp. 205272.Google Scholar
[5] Hatayama, G., Kirillov, A. N., Kuniba, A., Okado, M., Takagi, T. and Yamada, Y., Character formulae of sbln-modules and inhomogeneous paths, Nucl. Phys., B536 [PM] (1999), 575616.CrossRefGoogle Scholar
[6] Hong, J. and Kang, S.-J., Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, Vol. 42, AMS, 2002.CrossRefGoogle Scholar
[7] Kac, V., Infinite dimensional Lie algebras, third edition, Cambridge University Press, Cambridge, 1990.CrossRefGoogle Scholar
[8] Kleber, M., Combinatorial structure of finite dimensional representations of Yan-gians, the simply-laced case, Int. Math. Res. Not., 7 (1997), no. 4, 1872001.Google Scholar
[9] Kashiwara, M., On Level Zero Representations of Quantized Affine Algebras, Duke Math. J., 112 n. 1 (2002), 117175.Google Scholar
[10] Kashiwara, M., Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci., 41 (2005), no. 1, 223250.Google Scholar
[11] Kumar, S., Kac-Moody Groups, their flag varieties and representation theory, Progress in Mathematics, Birkhäuser Verlag, Boston, 2002.CrossRefGoogle Scholar
[12] Kumar, S., Demazure Character Formula in arbitrary Kac-Moody setting, Invent. Math., 89 (1987), 395423.CrossRefGoogle Scholar
[13] Kuniba, A., Misra, K., Okado, M., Takagi, T., and Uchiyama, J., Crystals for Demazure Modules of Classical Affine Lie Algebras, J. Algebra, 208 (1998), no. 1, 185215.Google Scholar
[14] Kuniba, A., Misra, K., Okado, M., Takagi, T., and Uchiyama, J., Demazure Modules and Perfect Crystals, J. Comm. Math. Phys., 192 (1998), 555567.CrossRefGoogle Scholar
[15] Littelmann, P., On spherical double cones, J. Algebra, 89 (1994), 142157.CrossRefGoogle Scholar
[16] Magyar, P., Littelmann Paths for the Basic Representation of an Affine Lie Algebra, math.RT/0308156.Google Scholar
[17] Mathieu, O., Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque (1988), 159160.Google Scholar
[18] Naito, S. and Sagaki, D., Crystal of Lakshmibai-Seshadri Paths associated to an Integral Weight of Level Zero for an Affine Lie Algebra, math.QA/051001.Google Scholar
[19] Naito, S. and Sagaki, D., Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras, math.QA/0503287.Google Scholar
[20] Sanderson, Y., Real characters for Demazure modules of rank two affine Lie algebras, J. Algebra, 184 (1996).CrossRefGoogle Scholar
[21] Yamane, S., Perfect crystals of Uq(G2 (1)), J. Algebra, 210 (1998), no. 2, 440486.Google Scholar