Skip to main content Accessibility help
×
Home

VIRTUAL ALGEBRAIC FIBRATIONS OF KÄHLER GROUPS

  • STEFAN FRIEDL (a1) and STEFANO VIDUSSI (a2)

Abstract

This paper stems from the observation (arising from work of Delzant) that “most” Kähler groups $G$ virtually algebraically fiber, that is, admit a finite index subgroup that maps onto $\mathbb{Z}$ with finitely generated kernel. For the remaining ones, the Albanese dimension of all finite index subgroups is at most one, that is, they have virtual Albanese dimension $va(G)\leqslant 1$ . We show that the existence of algebraic fibrations has implications in the study of coherence and higher BNSR invariants of the fundamental group of aspherical Kähler surfaces. The class of Kähler groups with $va(G)=1$ includes virtual surface groups. Further examples exist; nonetheless, they exhibit a strong relation with surface groups. In fact, we show that the Green–Lazarsfeld sets of groups with $va(G)=1$ (virtually) coincide with those of surface groups, and furthermore that the only virtually RFRS groups with $va(G)=1$ are virtually surface groups.

Copyright

References

Hide All
[1]Agol, I., Criteria for virtual fibering, J. Topol. 1(2) (2008), 269284.
[2]Agol, I., The virtual Haken conjecture, Doc. Math. 18 (2013), 10451087; with an appendix by I. Agol, D. Groves and J. Manning.
[3]Amorós, J., Burger, M., Corlette, K., Kotschick, D. and Toledo, D., Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs 44, American Mathematical Society, Providence, RI, 1996.
[4]Aschenbrenner, M., Friedl, S. and Wilton, H., 3-manifolds Groups, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015.
[5]Barth, W., Hulek, K., Peters, C. and Van de Ven, A., “Compact complex surfaces”, in Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Folge, Second edition, A Series of Modern Surveys in Mathematics 4, Springer, Berlin, 2004.
[6]Bieri, R., Geoghegan, R. and Kochloukova, D., The sigma invariant of Thompson’s group F, Groups Geom. Dyn. 4(2) (2010), 263273.
[7]Bieri, R., Neumann, W. and Strebel, R., A geometric invariant of discrete groups, Invent. Math. 90(3) (1987), 451477.
[8]Bieri, R. and Renz, B., Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63(3) (1988), 464497.
[9]Bridson, M. R., Howie, J., Miller, C. F. III and Short, H., The subgroups of direct products of surface groups, Geom. Dedicata 92 (2002), 95103.
[10]Brudnyi, A., A note on the geometry of Green–Lazarsfeld sets, preprint, 2002, arXiv:math/0204069.
[11]Brudnyi, A., Solvable matrix representations of Kähler groups, Differential Geom. Appl. 19(2) (2003), 167191.
[12]Campana, F., Ensembles de Green–Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom. 10(4) (2001), 599622.
[13]Cartwight, D., Koziark, V. and Yeung, S.-K., On the Cartwight–Steger surface, J. Algebraic Geom. 26(4) (2017), 655689.
[14]Cartwright, D. and Steger, T., Enumeration of the 50 fake projective planes, C. R. Acad. Sci. Paris, Ser. 1 348 (2010), 1113.
[15]Catanese, F., Moduli and classification of irregular Kähler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991), 263289.
[16]Catanese, F., Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122(1) (2000), 144.
[17]Catanese, F., Fibred Kähler and quasi-projective groups, Adv. Geom. Suppl. (2003), 1327; Special issue dedicated to Adriano Barlotti.
[18]Catanese, F. and Rollenske, S., Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009), 205233.
[19]Delzant, T., Trees, valuations and the Green–Lazarsfeld set, Geom. Funct. Anal. 18(4) (2008), 12361250.
[20]Delzant, T., L’invariant de Bieri Neumann Strebel des groupes fondamentaux des variétés kähleriennes, Math. Ann. 348 (2010), 119125.
[21]Delzant, T. and Gromov, M., Cuts in Kähler Groups, Progress in Mathematics 248, Birkhäuser, Basel/Switzerland, 2005, 355.
[22]Di Cerbo, L. F. and Stover, M., Bielliptic ball quotient compactifications and lattices in PU (2, 1) with finitely generated commutator subgroup, Ann. Inst. Fourier (Grenoble) 67(1) (2017), 315328.
[23]Dimca, A., Papadima, S. and Suciu, A. I., Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math. 629 (2009), 89105.
[24]Fiz Pontiveros, G., Glebov, R. and Karpas, I., Virtually fibering random Right-angled Coxeter groups, preprint, 2017.
[25]Friedl, S. and Vidussi, S., Rank gradients of infinite cyclic covers of Kähler manifolds, J. Group Theory 19(5) (2016), 941957.
[26]Green, M. and Lazarsfeld, R., Deformation theory, generic vanishing theorems and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90(2) (1987), 389407.
[27]Green, M. and Lazarsfeld, R., Higher obstruction to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4(1) (1991), 87103.
[28]Hillman, J., Complex surfaces which are fibre bundles, Topology Appl. 100(2–3) (2000), 187191.
[29]Hillman, J., Four-Manifolds, Geometries and Knots, Geom. Topol. Monogr. 5, Geom. Topol. Publ., Coventry, 2002, (revision 2014).
[30]Hillman, J., “Sections of surface bundles”, in Interactions between Low-Dimensional Topology and Mapping Class Groups, Geom. Topol. Monogr. 19, Geom. Topol. Publ., Coventry, 2015, 119.
[31]Hironaka, E., Alexander stratifications of character varieties, Ann. Inst. Fourier (Grenoble) 47(2) (1997), 555583.
[32]Jankiewicz, K., Norin, S. and Wise, D., Virtually fibering Right-angled Coxeter groups, J. Inst. Math. Jussieu, to appear (2019).
[33]Johnson, F. E. A., A group theoretic analogue of the Parshin–Arakelov rigidity theorem, Arch. Math. 63 (1994), 354361.
[34]Johnson, F. E. A., “Poly-surface groups”, in Geometry and Cohomology in Group Theory, London Mathematical Society Lecture Note Series 252, Cambridge Univ. Press, Cambridge, 1998, 190208.
[35]Kapovich, M., On normal subgroups in the fundamental groups of complex surfaces, preprint, 1998,arXiv:math/9808085.
[36]Kapovich, M., Non-coherence of arithmetic hyperbolic lattices, Geom. Topol. 17 (2013), 3971.
[37]Kielak, D., Residually finite rationally-solvable groups and virtual fibring, J. Amer. Math. Soc., to appear (2019).
[38]Kotschick, D., “On regularly fibered complex surfaces”, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr. 2, 1999, 291298.
[39]Le, J. A., Lönne, M. and Rollenske, S., Double Kodaira fibrations with small signature, preprint, 2017.
[40]Liu, K., Geometric height inequalities, Math. Res. Lett. 3 (1996), 693702.
[41]Llosa Isenrich, C., Finite presentations for Kähler groups with arbitrary finiteness properties, J. Algebra 476 (2017), 344367.
[42]Napier, T. and Ramachandran, M., Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups, Geom. Funct. Anal. 17(5) (2008), 16211654.
[43]Py, P., Coxeter groups and Kähler groups, Math. Proc. Cambridge Philos. Soc. 155 (2013), 557566.
[44]Py, P., Some noncoherent, nonpositively curved Kähler groups, Enseign. Math. 62(1–2) (2016), 171187.
[45]Scott, P., The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), 401487.
[46]Simpson, C., Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Super. (4) 26(3) (1993), 361401.
[47]Stallings, J., “On fibering certain 3-manifolds”, in Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, NJ, 1962, 95100.
[48]Stover, M., Cusp and b 1 growth for ball quotients and maps onto ℤ with finitely generated kernel, Indiana Univ. Math. J. (2019), to appear.
[49]Stover, M., On general type surfaces with q = 1 and c 2 = 3p g, Manuscripta Math. 159(1–2) (2019), 171182.
[50]Toledo, D., Examples of fundamental groups of compact Kähler manifolds, Bull. Lond. Math. Soc. 22(4) (1990), 339343.
[51]Wise, D., The structure of groups with a quasi-convex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009), 4455.
[52]Wise, D., From Riches to RAAGS: 3-Manifolds, Right-angled Artin Groups, and Cubical Geometry, CBMS Regional Conference Series in Mathematics, 117, American Mathematical Society, Providence, RI, 2012.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

VIRTUAL ALGEBRAIC FIBRATIONS OF KÄHLER GROUPS

  • STEFAN FRIEDL (a1) and STEFANO VIDUSSI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed