Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-xnv6z Total loading time: 0.221 Render date: 2022-11-29T19:26:01.456Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Abbreviated text input using language modeling

Published online by Cambridge University Press:  06 July 2006

STUART M. SHIEBER
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138, USA e-mail: shieber@deas.harvard.edu, nelken@deas.harvard.edu
RANI NELKEN
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138, USA e-mail: shieber@deas.harvard.edu, nelken@deas.harvard.edu

Abstract

We address the problem of improving the efficiency of natural language text input under degraded conditions (for instance, on mobile computing devices or by disabled users), by taking advantage of the informational redundancy in natural language. Previous approaches to this problem have been based on the idea of prediction of the text, but these require the user to take overt action to verify or select the system's predictions. We propose taking advantage of the duality between prediction and compression. We allow the user to enter text in compressed form, in particular, using a simple stipulated abbreviation method that reduces characters by 26.4%, yet is simple enough that it can be learned easily and generated relatively fluently. We decode the abbreviated text using a statistical generative model of abbreviation, with a residual word error rate of 3.3%. The chief component of this model is an n-gram language model. Because the system's operation is completely independent from the user's, the overhead from cognitive task switching and attending to the system's actions online is eliminated, opening up the possibility that the compression-based method can achieve text input efficiency improvements where the prediction-based methods have not. We report the results of a user study evaluating this method.

Type
Papers
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Abbreviated text input using language modeling
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Abbreviated text input using language modeling
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Abbreviated text input using language modeling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *