Skip to main content
×
×
Home

SaferDrive: An NLG-based behaviour change support system for drivers

  • DANIEL BRAUN (a1), EHUD REITER (a2) and ADVAITH SIDDHARTHAN (a3)
Abstract

Despite the long history of Natural Language Generation (NLG) research, the potential for influencing real world behaviour through automatically generated texts has not received much attention. In this paper, we present SaferDrive, a behaviour change support system that uses NLG and telematic data in order to create weekly textual feedback for automobile drivers, which is delivered through a smartphone application. Usage-based car insurances use sensors to track driver behaviour. Although the data collected by such insurances could provide detailed feedback about the driving style, they are typically withheld from the driver and used only to calculate insurance premiums. SaferDrive instead provides detailed textual feedback about the driving style, with the intent to help drivers improve their driving habits. We evaluate the system with real drivers and report that the textual feedback generated by our system does have a positive influence on driving habits, especially with regard to speeding.

Copyright
References
Hide All
Abraham, C., and Michie, S., 2008. A taxonomy of behavior change techniques used in interventions. Health Psychology 27 (3): 379.
Ajzen, I., and Fishbein, M., 1980. Understanding Attitudes and Predicting Social Behaviour. Saddle River, New Jersey, USA: Prentice-Hall.
Arroyo, E., Sullivan, S., and Selker, T. 2006. Carcoach: a polite and effective driving coach. In Proceedings of the CHI ’06 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’06), pp. 357–62. New York, USA: ACM.
Association of Chief Police Officers. 2015. ACPO Speed Enforcement Policy Guidelines 2011–2015: Joining Forces for Safer Roads.
Bandura, A. 1994. Social cognitive theory and exercise of control over HIV infection. In Preventing AIDS, pp. 2559. New York, USA: Springer US.
Becker, M. H., 1974. The health belief model and personal health behavior. Health Education & Behavior 2 (4): 354–86.
Bhatia, P. 2003. Vehicle Technologies to Improve Performance and Safety. University of California Transportation Center, Berkeley, CA, USA.
Blake, S., Siddharthan, A., Nguyen, H., Sharma, N., Robinson, A.-M., O’Mahony, E., Darvill, B., Mellish, C., and van der Wal, R. 2012. Natural language generation for nature conservation: automating feedback to help volunteers identify bumblebee species. In Proceedings of COLING 2012, pp. 311–24. Mumbai, India: Association for Computational Linguistics.
Boriboonsomsin, K., Vu, A., and Barth, M. 2010. Eco-driving: Pilot Evaluation of Driving Behavior Changes Among Us Drivers. University of California Transportation Center, Berkeley, CA, USA.
Braun, D., Endres, C., and Müller, C. 2011. Determination of mobility context using low-level data. In Adjunct Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2011), pp. 41–2. Salzburg, Austria: ACM.
Braun, D., Reiter, E., and Siddharthan, A. 2015. Creating textual driver feedback from telemetric data. In Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pp. 156–65. Brighton, UK: Association for Computational Linguistics.
Centre for Automotive Management. 2013. The used car market report 2013. The University of Buckingham Business School.
Department for Transport. 2016. Reported road casualties great Britain: 2013 annual report.
Di Eugenio, B., Fossati, D., Yu, D., Haller, S., and Glass, M. 2005. Aggregation improves learning: experiments in natural language generation for intelligent tutoring systems. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 50–7. Ann Arbor, Michigan, USA: Association for Computational Linguistics.
Dohrenwend, A., 2002. Serving up the feedback sandwich. Family Practice Management 9 (10): 4350.
Endlein, M., Trede, S., and Letzner-Friedlein, P. 2014. Dat report 2014. Deutsche Automobil Treuhand GmbH (DAT).
Fishbein, M., 2000. The role of theory in HIV prevention. AIDS Care 12 (3): 273–8.
Fogg, B. J. 2009. A behavior model for persuasive design. In Proceedings of the 4th international Conference on Persuasive Technology, p. 40. Claremont, CA, USA: ACM.
Gale, E. A. 2004. The Hawthorne studies – a fable for our times? QJM 97 (7): 439–49.
Gatt, A., Portet, F., Reiter, E., Hunter, J., Mahamood, S., Moncur, W., and Sripada, S., 2009. From data to text in the neonatal intensive care unit: using NLG technology for decision support and information management. AI Communications 22 (3): 153–86.
Gatt, A., and Reiter, E. 2009. SimpleNLG: a realisation engine for practical applications. In Proceedings of the 12th European Workshop on Natural Language Generation, pp. 90–3. Athens, Greece: Association for Computational Linguistics.
Gkatzia, D., Hastie, H., Janarthanam, S., and Lemon, O. 2013. Generating student feedback from time-series data using reinforcement learning. In Proceedings of the 14th European Workshop on Natural Language Generation, pp. 115–24. Sofia, Bulgaria: Association for Computational Linguistics.
Gkatzia, D., Lemon, O., and Rieser, V. 2016. Natural language generation enhances human decision-making with uncertain information. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 264–8. Berlin, Germany: Association for Computational Linguistics.
Goldberg, E., Driedger, N., and Kittredge, R. I., 1994. Using natural-language processing to produce weather forecasts. IEEE Expert 9 (2): 4553.
Hallett, C., Power, R., and Scott, D. 2006. Summarisation and visualisation of e-health data repositories. In Proceedings of the UK E-Science All-Hands Meeting. Edinburgh, UK: National e-Science Centre.
Händel, P., Skog, I., Wahlström, J., Bonawiede, F., Welch, R., Ohlsson, J., and Ohlsson, M., 2014. Insurance telematics: opportunities and challenges with the smartphone solution. Intelligent Transportation Systems Magazine 6 (4): 5770.
Harris, M. D. 2008. Building a large-scale commercial NLG system for an EMR. In Proceedings of the 5th International Natural Language Generation Conference, pp. 157–60. Salt Fork, Ohio, USA: Association for Computational Linguistics.
Hattie, J., and Timperley, H., 2007. The power of feedback. Review of Educational Research 77 (1): 81112.
Hunter, J., Freer, Y., Gatt, A., Reiter, E., Sripada, S., Sykes, C., and Westwater, D., 2011. BT-nurse: computer generation of natural language shift summaries from complex heterogeneous medical data. Journal of the American Medical Informatics Association 18 (5): 621–4.
Ilgen, D. R., Fisher, C. D., and Taylor, M. S., 1979. Consequences of individual feedback on behavior in organizations. Journal of Applied Psychology 64 (4): 349.
Konstas, I., and Lapata, M. 2012. Unsupervised concept-to-text generation with hypergraphs. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 752–61. Montreal, Quebec, Canada: Association for Computational Linguistics.
Langkilde, I., and Knight, K. 1998. Generation that exploits corpus-based statistical knowledge. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics-Volume 1, pp. 704–10. Montreal, Quebec, Canada: Association for Computational Linguistics.
Lehto, T. 2012. Designing persuasive health behavior change interventions. In Critical Issues for the Development of Sustainable E-health Solutions, pp. 163–81. New York, USA: Springer.
Mairesse, F., Gašić, M., Jurčíček, F., Keizer, S., Thomson, B., Yu, K., and Young, S. 2010. Phrase-based statistical language generation using graphical models and active learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 1552–61. Uppsala, Sweden: Association for Computational Linguistics.
Masthoff, J., Grasso, F., and Ham, J., 2014. Preface to the special issue on personalization and behavior change. User Modeling and User-Adapted Interaction 24 (5): 345–50.
Noël, M. 2015. The role of OBD in the 2015 connected car market. In SMi’s Telematics for Usage-Based Insurance Conference. London, UK: SMi Group.
Ponnamperuma, K., Siddharthan, A., Zeng, C., Mellish, C., and van der Wal, R. 2013. Tag2blog: narrative generation from satellite tag data. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 169–74. Sofia, Bulgaria: Association for Computational Linguistics.
Ramos-Soto, A., Bugarín, A., Barro, S., Gallego, N., Rodríguez, C., Fraga, I., and Saunders, A. 2015. Automatic generation of air quality index textual forecasts using a data-to-text approach. In Conference of the Spanish Association for Artificial Intelligence, pp. 164–74. Berlin, Germany: Springer Verlag.
Ratsameethammawong, P., and Kasemsan, K., 2010. Mobile phone location tracking by the combination of GPS, Wi-Fi and cell location technology. Communications of the IBIMA 2010: 17.
Reiter, E. 2007. An architecture for data-to-text systems. In Proceedings of the 11th European Workshop on Natural Language Generation, pp. 97–104. Saarbrücken, Germany: Association for Computational Linguistics.
Reiter, E., and Dale, R., 2000. Building Natural Language Generation Systems. Cambridge, UK: Cambridge University Press.
Reiter, E., Robertson, R., and Osman, L. M., 2003. Lessons from a failure: generating tailored smoking cessation letters. Artificial Intelligence 144 (1): 4158.
Riederer, M. 2014. Developments in neighbouring countries offer potential for synergies. Swiss Platform for the Promotion of ITS.
Rose, S. 2013. Telematics: How Big Data is Transforming the Auto Insurance Industry. SAS.
Rosenstock, I. M., Strecher, V. J., and Becker, M. H. 1994. The health belief model and hiv risk behavior change. In Preventing AIDS, pp. 524. New York, USA: Springer.
Sharon, T., Selker, T., Wagner, L., and Frank, A. J. 2005. Carcoach: a generalized layered architecture for educational car systems. In Proceedings of IEEE International Conference on Software-Science, Technology and Engineering, pp. 13–22. New York, USA: IEEE.
Sripada, S. G., Burnett, N., Turner, R., Mastin, J., and Evans, D. 2014. A case study: NLG meeting weather industry demand for quality and quantity of textual weather forecasts. In INLG 2014 - Proceedings of the 8th International Natural Language Generation Conference, Including Proceedings of the INLG and SIGDIAL 2014 Joint Session, 19–21 June 2014, pp. 1–5. Philadelphia, PA, USA: Association for Computational Linguistics.
Statistisches Bundesamt. 2016. Unfallentwicklung auf deutschen strassen 2015.
Steelman, L. A. and Rutkowski, K. A., 2004. Moderators of employee reactions to negative feedback. Journal of Managerial Psychology 19 (1): 618.
Stephens, E., Mylne, K., and Spiegelhalter, D. 2011. Using an online game to evaluate effective methods of communicating ensemble model output to different audiences. In AGU Fall Meeting Abstracts, vol. 1, p. 776. San Francisco, California, USA: American Geophysical Union.
Teach, R. L. and Shortliffe, E. H. 1987. An analysis of physician attitudes regarding computer-based clinical consultation systems. In Use and Impact of Computers in Clinical Medicine, pp. 6885. New York, USA: Springer.
Towne, D. M., 1997. Approximate reasoning techniques for intelligent diagnostic instruction. International Journal of Artificial Intelligence in Education 8: 262–83.
Tulusan, J., Staake, T., and Fleisch, E. 2012. Providing eco-driving feedback to corporate car drivers: what impact does a smartphone application have on their fuel efficiency? In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 212–15. Pittsburgh, PA, USA: ACM.
Turner, R., Sripada, S., Reiter, E., and Davy, I. 2008. Selecting the content of textual descriptions of geographically located events in spatio-temporal weather data. In Ellis, R., Allen, T., and Petridis, M. (eds.), Applications and Innovations in Intelligent Systems XV, pp. 7588. London, UK: Springer.
Unger, T. 2012. Junge Fahrer 2012. In Berichte der ADAC Unfallforschung. Munich, Germany: ADAC.
van der Wal, R., Sharma, N., Mellish, C., Robinson, A., and Siddharthan, A., 2016. The role of automated feedback in training and retaining biological recorders for citizen science. Conservation Biology 30 (3): 550–61.
van der Wal, R., Zeng, C., Heptinstall, D., Ponnamperuma, K., Mellish, C., Ben, S., and Siddharthan, A., 2015. Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: a case study of reintroduced red kites. Ambio 44 (4): 612–23.
Weiner, J., 1980. Blah, a system which explains its reasoning. Artificial Intelligence 15 (1): 1948.
Williams, S. 2004. Natural Language Generation (NLG) of Discourse Relations for Different Reading Levels. Ph.D. thesis, University of Aberdeen.
Williams, S., and Reiter, E. 2008. Skillsum: basic skills screening with personalised, computer-generated feedback. In Proceedings 11th International Conference on Interactive Computer aided Learning. Kassel, Germany: Kassel University Press.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y. 2015. Show, attend and tell: neural image caption generation with visual attention. In International Conference on Machine Learning, pp. 2048–57. Lille, France: IMLS.
Ye, L. R., and Johnson, P. E., 1995. The impact of explanation facilities on user acceptance of expert systems advice. MIS Quarterly 19 (2): 157–72.
Yue, Y., Zhang, K., and Jacobsen, H.-A. 2013. Smart phone application for connected vehicles and smart transportation. In Proceedings Demo & Poster Track of ACM/IFIP/USENIX International Middleware Conference, p. 12. ACM.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Natural Language Engineering
  • ISSN: 1351-3249
  • EISSN: 1469-8110
  • URL: /core/journals/natural-language-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed