Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T20:21:53.030Z Has data issue: false hasContentIssue false

Diagenesis, regular growth and records of seasonality in inoceramid bivalve shells from mid-Maastrichtian hemipelagic beds of the Bay of Biscay

Published online by Cambridge University Press:  01 April 2016

J.J. Gómez-Alday
Affiliation:
Departamento de Mineralogía-Petrología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain; e-mail:nppelzaj@lg.ehu.es
J. Elorza
Affiliation:
Departamento de Mineralogía-Petrología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain; e-mail:nppelzaj@lg.ehu.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Inoceramid bivalve shells from outcrops of mid-Maastrichtian deep-water carbonate, hemipelagic beds in the Bay of Biscay exhibit post-depositional diagenetic alteration. New data from isotopic analysis (carbon and oxygen), together with observations of the inoceramid shells and carbonate host-rock using cathodoluminescence (CL) and scanning electron microscopy (SEM), confirm a lateral, westerly increase in the degree of diagenesis, without any substantial textural changes in the alternating dark and clear growth lines of the shell microstructure. Under CL, a bright yellowish to red colour is observed in the most diagenetically altered inoceramid samples. Non-luminescent areas are restricted to the central parts of the less altered shells. A detailed geochemical analysis by electron microprobe, along intrashell profiles of the non-luminescent and luminescent zones has revealed that Mg/Ca, Sr/Ca, Na/Ca, Fe/Ca and Mn/Ca ratios show oscillatory curves but behave differently. Fe/Ca, Mn/Ca and Na/Ca ratios are well correlated but usually show an opposite relationship when compared with the Mg/Ca and Sr/Ca ratios of both luminescent and non-luminescent shell areas. Our findings have palaeoenvironmental implications in that the geochemistry of the regular, alternating dark and clear growth lines seems to be related to the input of seasonally controlled phytodetritus to the basin floor.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Barbin, V., Ramseyer, K., Debenay, J.P., Schein, E., Roux, M. & Decrouez, D., 1991a. Cathodoluminescence of recent biogenic carbonates: an environmental and ontogenetic fingerprint. Geological Magazine 128: 19–26.CrossRefGoogle Scholar
Barbin, V., Schein, E., Roux, M., Decrouez, D. & Ramseyer, K., 1991b. Stries de croissance révélées par cathodoluminescence dans la coquille de Pecten maximus (L.) récent de la Rade de Brest (Pectinidae, Bivalvia). Geobios 24: 65–70.CrossRefGoogle Scholar
Barbin, V., Brand, U., Hewitt, R.A. & Ramseyer, K., 1995. Similarity in cephalopod shell biochemistry since Carboniferous: evidence from cathodoluminescence. Geobios 28: 701–710.CrossRefGoogle Scholar
Barrera, E. & Tevesz, M.J.S., 1990. Oxygen and carbon isotopes: utility for environmental interpretation of recent and fossil invertebrate skeletons. In: Carter, J.G. (Ed.): Skeletal biomineralization: pattern and evolutionary trends. Van Nostrand (New York): 557–566.Google Scholar
Barrera, E., Tevesz, M.J.S. & Carter, J.G., 1990. Variations in oxygen and carbon isotopic compositions and microstructure of the shell of Adamussium colbecki (Bivalvia). Palaios 5: 149–159.CrossRefGoogle Scholar
Barrera, E. & Savin, S.M., 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. In: Barrera, E. & Johnson, C.C. (Eds): Evolution of the Cretaceous ocean-climate system. Geological Society of America, Special Paper 332: 245–282.Google Scholar
Barron, E.J., Saltzman, E. & Price, D.A., 1984. Occurrence of Inoceramus in the South Atlantic and oxygen isotopic palaeotemperatures in Hole 5300. Initial Reports of Deep Sea Drilling Project 75: 893–904.Google Scholar
Billett, D.S.M., Lampitt, R.S., Rice, A.L. & Mantoura, R.F.C., 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302: 520–522.CrossRefGoogle Scholar
Brand, U. & Veizer, J., 1980. Chemical diagenesis of a multi-component carbonate system, 1: Trace elements. Journal of sedimentary Petrology 50: 1219–1236.Google Scholar
Brand, U. & Morrison, J.O., 1987. Biochemistry of fossil marine invertebrates. Geoscience Canada 14: 85–107.Google Scholar
Busenberg, E. & Plummer, L.N., 1985. Kinetic and thermodynamic factors controlling the distribution of SO4 −2 and Na+ in calcites and selected aragonites. Geochimica et Cosmochimica Acta 49: 713–725.CrossRefGoogle Scholar
Carpenter, S.J. & Lohmann, K., 1992 Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochimica et Cosmochimica Acta 56: 1837–1849.CrossRefGoogle Scholar
Clauser, S., 1987. Evolution de la composition isotopique de l’oxygène des carbonates durant le Campanien-Maastrichtien. Données préliminaires issues de la série de Bidart (Pyrénées Atlantiques). Comptes rendus de l’Académie des Sciences Paris (2)304(11): 579–584.Google Scholar
Crowley, T.J., Short, D.A., Mengel, J.G. & North, G.R., 1986. Role of seasonality in the evolution of climate during the last 100 million years. Science 231: 579–584.CrossRefGoogle ScholarPubMed
Dauphin, Y., Gautret, P. & Cuif, J.P., 1996. Evolution diagénétique de la composition chimique des aragonites biogéniques chez les spongiaires, coraux et céphalopodes triasiques du Taurus lycien (Turquie).xs Bulletin de la Société géologique de France 167: 247–256.Google Scholar
Dhondt, A.V., 1992. Cretaceous inoceramid biogeography: a review. In: Malmgren, B.A. & Bengtson, P. (Eds): Biogeographic patterns in the Cretaceous ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 92: 217–232.Google Scholar
Dickson, J.A.D., 1965. A modified staining technique for carbonates in thin section. Nature 205: 587.CrossRefGoogle Scholar
Dodd, J.R. & Stanton, R.J., 1981. Palaeoecology. Concepts and applications. Wiley (Chichester): 559 pp.Google Scholar
Dromgoole, E.D. & Walter, L.M., 1990. Iron and manganese incorporation into calcite: effects of growth kinetics, temperature and solution chemistry. Chemical Geology 81: 311–336.CrossRefGoogle Scholar
Elorza, J. & Garcia-Garmilla, F., 1996. Petrological and geochemical evidence for diagenesis of inoceramid bivalve shells in the Plentzia Formation (Upper Cretaceous, Basque-Cantabrian Region, northern Spain). Cretaceous Reearch 17: 479–503.Google Scholar
Elorza, J. & García-Garmilla, F., 1998. Palaeoenvironmental implications and diagenesis of inoceramid shells (Bivalvia) in the mid-Maastrichtian beds of the Sopelana, Zumaya and Bidart sections (coast of the Bay of Biscay, Basque Country). Palaeogeography, Palaeoclimatology, Palaeoecology 141: 303–328.CrossRefGoogle Scholar
Elorza, J., García-Garmilla, F. & Jagt, J.W.M., 1997. Diagenesis-related differences in isotopic and elemental composition of late Campanian and early Maastrichtian inoceramids and belemnites from NE Belgium: palaeoenvironmental implications. Geologie en Mijnbouw 75: 349–360.Google Scholar
Emrich, K., Ehhalt, D.H. & Vogel, J.C., 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8: 363–371.CrossRefGoogle Scholar
Feuillée, P. & Rat, P., 1971. Structures et paléogéographies pyrénéo-cantabriques. In: Historie structurale du Golfe de Gascogne. Technip (Paris): V.11-V.1-48.Google Scholar
Gilkinson, K.D., Hutchings, J.A., Oshel, P.E. & Haedrich, R.L., 1986. Shell microstructure and observations on internal banding pattern in the bivalves Yoldia thraciaeformis Storer, 1938. and Nuculana pernula Müller, 1779 (Nuculanidae) from a deep-sea environment. The Veliger 29: 70–77.Google Scholar
Gómez-Alday, J.J. & Elorza, J., 1998. Incremento lateral hacia el Oeste del grado diagenético en el Maastrichtiense medio del Arco Vasco: evidencias en inocerámidos y roca encajante. Geogaceta 24: 151–154.Google Scholar
Gómez-Alday, J.J., García-Garmilla, F. & Elorza, J., 1998. Inocerámidos y belemnites en facies de la creta (Aquitania, Pays de Caux, NE Ardenas): diferente comportamiento frente a la diagénesis. Geogaceta 25: 91–94.Google Scholar
Grossman, E.L., Mii, H.S., Zhang, C. &Yancey, T.E., 1996. Chemical variation in Pennsylvanian brachiopod shells - diagenetic, taxonomic, microstructural, and seasonal effects. Journal of sedimentary Research 66: 1011–1022.Google Scholar
Heinrich, A.K., 1962. The life histories of plankton animals and seasonal cycles of plankton communities in the oceans. Journal du Conseil international d’Exploration du Mer 27: 15–24.Google Scholar
Henoc, J. & Tong, M., 1978. Automatisation de la microsonde. Journal of Microscopy, Spectroscopy and Electronics 3: 247–254.Google Scholar
Jones, D.S. & Quitmyer, I.R., 1996. Making time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11: 340–346.CrossRefGoogle Scholar
Kennish, M.J., 1980. Shell microgrowth analysis. Mercenaria mercenaria as a type example for research in population dynamics. In: Rhoads, D.C. & Lutz, R.A. (Eds): Skeletal growth of aquatic organisms. Plenum Press (New York): 255–294.Google Scholar
Kennish, M.J. & Lute, P.L., 1994. Marine chemistry. In: Kennish, M.J. & Lute, P.L. (Eds): Practical handbook of marine science (2nd edition). CRC (Boca Raton): 566 pp.Google Scholar
Klein, R.T., Lohmann, K.C. & Thayer, C.W., 1996a. Bivalve skeletons record sea-surface temperature and ∂18O via Mg/Ca and 18O/16O ratios. Geology 24: 415–418.2.3.CO;2>CrossRefGoogle Scholar
Klein, R.T, Lohmann, K.C. & Thayer, C.W., 1996b. Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta 60: 4207–4221.CrossRefGoogle Scholar
Klein, R.T., Lohmann, K.C. & Kennedy, G.L., 1997. Elemental and isotopic proxies of paleotemperature and paleosalinity: climate reconstruction of the marginal northeast Pacific ca. 80 ka. Geology 25: 363–366.2.3.CO;2>CrossRefGoogle Scholar
Krantz, D.E., Williams, D.F. & Jones, D.S., 1987. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology 58: 249–266.CrossRefGoogle Scholar
Lutz, R.A. & Rhoads, D.C., 1980. Growth patterns within the molluscan shell: an overview. In: Rhoads, D.C. & Lutz, R.A. (Eds): Skeletal growth of aquatic organisms: biological records of environmental change. Plenum Press (New York): 203–254.Google Scholar
MacLeod, K.G., 1994. Extinction of inoceramid bivalves in Maastrichtian strata of the Bay of Biscay region of France and Spain. Journal of Paleontology 68: 1048–1066.CrossRefGoogle Scholar
MacLeod, K.G. & Ward, P.D., 1990. Extinction pattern of Inoceramus (Bivalvia) based on shell fragment biostratigraphy. Sharpton, V.L.Ward, P.D. (Eds): Global catastrophes in Earth history. Geological Society of America, Special Paper 247: 509–518.Google Scholar
MacLeod, K.G. & Orr, W.N., 1993. The taphonomy of Maastrichtian inoceramids in the Basque region of France and Spain and the pattern of their decline and disappearance. Paleobiology 19: 235–250.CrossRefGoogle Scholar
MacLeod, K.G., Huber, B.T. & Ward, P.D., 1996. The biostratigraphy and paleobiogeography of Maastrichtian inoceramids. In: Ryder, G., Fastovsky, D.Gartner, S. (Eds): The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America, Special Paper 307: 361–373.Google Scholar
Maliva, R.G., Dickson, J.A.D. & Räheim, A., 1991. Modelling of chalk diagenesis (Eldfisk Field, Nowegian North Sea) using whole rock and laser ablation stable isotopie data. Geological Magazine 128:43–49.CrossRefGoogle Scholar
Mann, K.O., 1992. Physiological, environmental, and mineralogical controls on Mg and Sr concentrations in Nautilus . Journal of Paleontology 66: 620–636.CrossRefGoogle Scholar
Mathey, B., 1982. El Cretácico superior del Arco Vasco. In: Universidad Complutense (Ed.): El Cretácico de España. Universidad Complutense (Madrid): 111–136.Google Scholar
Mathey, B., 1987. Les flyschs crétacés supérieur des Pyrénées basques. Mémoires géologiques de l’Université de Dijon 12: 142–147.Google Scholar
McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemistry and Physics 18: 669–673.CrossRefGoogle Scholar
Mii, H.S. & Grossman, E.L., 1994. Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell. Geology 22: 661–664.2.3.CO;2>CrossRefGoogle Scholar
Miller, K.G., Barrera, E., Olsson, R.K. & Savin, S.M., 1999. Does ice drive early Maastrichtian eustasy? Geology 27: 783–786.2.3.CO;2>CrossRefGoogle Scholar
Morrison, J.O. & Brand, U., 1984. Secular and environmental variation of seawater: an example of brachiopod chemistry. Geological Association of Canada, Annual Meeting, Programme and Abstracts 9: 91.Google Scholar
Morrison, J.O. & Brand, U., 1986. Geochemistry of recent marine invertebrates. Geoscience Canada 13: 237–254.Google Scholar
Morrison, J.O. & Brand, U., 1988. An evaluation of diagenesis and chemostratigraphy of Upper Cretaceous molluscs from the Canadian Interior Seaway. Chemical Geology (Isotope Geoscience Section) 72: 235–248.CrossRefGoogle Scholar
Pirrie, D. & Marshall, J.D., 1990. Diagenesis of Inoceramus and Late Cretaceous paleoenvironmental geochemistry: a case study from James Ross Island, Antarctica. Palaios 5: 336–345.CrossRefGoogle Scholar
Pujalte, V., Baceta, J.I., Orue-Etxebarria, X. & Payros, A., 1998. Paleocene strata of the Basque Country, western Pyrenees, northern Spain: facies and sequence development in a deep-water starved basin. In: Graciansky, P. de, Hardenbol, J., Jacquin, T. & Vail, P. (Eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. Society of Economic Petrologists and Mineralogists, Special Publication 60: 311–325.Google Scholar
Purton, L.M.A., Shields, G.A., Brasier, M.D. & Grime, G.W., 1999. Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks. Geology 27: 1083–1086.2.3.CO;2>CrossRefGoogle Scholar
Ragland, P.C., Pilkey, O.H. & Blackwelder, B.W., 1979. Diagenetic changes in the elemental composition of unrecrystallized mollusk shells. Chemical Geology 25: 123–134.CrossRefGoogle Scholar
Rat, P., 1959. Les Pays crétacés basco-cantabriques. Publications de l’Université de Dijon 18: 1–525.Google Scholar
Sælen, G., 1989. Diagenesis and construction of the belemnite rostrum. Palaeontology 32: 765–798.Google Scholar
Saito, T. & Van Donk, J., 1974. Oxygen and carbon isotopic measurements of Late Cretaceous and Early Tertiary foraminifera. Micropaleontology 20: 152–177.CrossRefGoogle Scholar
Saltzman, E.S. & Barron, E.J., 1982. Deep circulation in the Late Cretaceous: oxygen isotope paleotemperatures from Inoceramus remains in DSDP cores. Palaeogeography, Palaeoclimatology, Palaeoecology 40: 167–181.CrossRefGoogle Scholar
Scholle, P.A. & Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64: 67–87.Google Scholar
Stoll, H.M. & Schrag, D.P., 1996. Evidence for glacial control of rapid sea level changes in the Early Cretaceous. Science 272: 1771–1774.CrossRefGoogle ScholarPubMed
Stoll, H.M. & Schrag, D.P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet?. Geological Society of America Bulletin 112: 308–319.2.0.CO;2>CrossRefGoogle Scholar
Turekian, K.K., Cochran, J.K., Kharkar, D.P., Cerrato, R.M., Vaisnys, J.R., Sanders, H.L., Grassle, J.F. & Allen, J.A., 1975. Low growth rate of a deep-sea clam determined by 228Ra chronology. Proceedings of the national Academy of Sciences (USA) 72: 2829–2832.CrossRefGoogle Scholar
Tyler, P.A., 1988. Seasonality in the deep sea. Oceanographic Marine Biology Annual Review 26: 227–258.Google Scholar
Veizer, J., Fritz, P. & Jones, B., 1986. Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochimica et Cosmochimica Acta 50: 1679–1696.CrossRefGoogle Scholar
Ward, P.D., Kennedy, W.J., MacLeod, K.G. & Mount, J., 1991. End-Cretaceous molluscan extinction patterns in Bay of Biscay K/T boundary sections: two different patterns. Geology 19: 1181–1184.Google Scholar
Ward, P.D. & Kennedy, W.J., 1993. Maastrichtian Ammonites from the Biscay Region (France, Spain). Paleontological Society Memoir 34: 1–58.Google Scholar
Whittaker, S.G., Kyser, T.K. & Caldwell, W.G.E., 1987. Palaeoenvironmental geochemistry of the Clagget marine cyclothem in south-central Saskatchewan. Canadian Journal of Earth Sciences 24: 967–984.CrossRefGoogle Scholar
Wright, E.K., 1987. Stratification and paleocirculation of Late Cretaceous Western Interior Seaway of North America. Geological Society of America Bulletin 99: 480–490.2.0.CO;2>CrossRefGoogle Scholar