Skip to main content
    • Aa
    • Aa

Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands – western Germany

  • C. Kasse (a1), R.T. Van Balen (a1) (a2), S.J.P. Bohncke (a1), J. Wallinga (a3) and M. Vreugdenhil (a4)...

The fluvial development of the Roer river in the southeastern Netherlands and western Germany is presented for the Late Pleniglacial, Late-glacial and Early Holocene periods. Reconstruction of fluvial-style changes is based on geomorphological and sedimentological analysis. Time control comes from correlation to the pollen-based biochronostratigraphic framework of the Netherlands combined with independent optically stimulated luminescence (OSL) ages. At the Pleniglacial to Late-glacial transition a system and channel pattern change occurred from an aggrading braided to an incising meandering system. Rapid rates of meander migration, as established for the Late-glacial by optical dating, were likely related to the sandy nature of the substratum and the Late-glacial incision of the Meuse that resulted in a higher river gradient in the downstream part of the Roer. In the Roer valley the Younger Dryas cooling is not clearly reflected by a fluvial system response, but this may also be related to Holocene erosion of Younger Dryas fluvial forms. An important incision and terrace formation was established at the Younger Dryas to Early Holocene transition, probably related to forest recovery, reduced sediment supply and base-level lowering of the Meuse. The results of this study show a stepwise reduction in the number of channel courses from a multi-channel braided system in the Pleniglacial, to a double meander-belt system in the Late-glacial and a single-channel meandering system in the Early Holocene. The results show that the forcing factors of fluvial-system change in the Roer valley are climate change (precipitation, permafrost and vegetation) and downstream base-level control by the Meuse.

Corresponding author
*Corresponding author. Email:
Hide All
AllenJ.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5: 89191.
BakelsC., 2017. Posterholt, a Late Pleistocene – Holocene record of the vegetation history in and around the valley of the Vlootbeek, a tributary of the river Meuse (southeastern Netherlands). Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
BerendsenH.J.A. & StouthamerE., 2001. Palaeogeographic development of the Rhine–Maas Delta, the Netherlands. Van Gorcum (Assen): 270 pp.
BerendsenH., HoekW. & SchornE., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). In: Frenzel B. (ed.): European river activity and climatic change during the Lateglacial and early Holocene. European Science Foundation project ‘European Palaeoclimate and man’, special issue 9, Paläoklimaforschung / Palaeoclimate Research 14: 151172.
Bodemkaart van Nederland, 1972. Blad 57 Oost Valkenswaard, Blad 58 West Roermond, schaal 1:50.000. Stichting voor Bodemkartering (Wageningen): 172 pp.
BogaartP.W., Van BalenR.T., KasseC. & VandenbergheJ., 2003. Process-based modelling of fluvial system response to rapid climate change II: application to the river Maas during the Last Glacial–Interglacial transition. Quaternary Science Reviews 22: 20972110.
BohnckeS. & WijmstraL., 1988. Reconstruction of Late-Glacial lake-level fluctuations in The Netherlands based on palaeobotanical analyses, geochemical results and pollen-density data. Boreas 17: 403425.
BohnckeS.J.P., VandenbergheJ. & HuijzerA.S., 1993. Periglacial palaeoenvironments during the Late Glacial in the Maas valley, the Netherlands. Geologie en Mijnbouw 72: 193210.
BohnckeS., KasseC. & VandenbergheJ., 1995. Climate induced environmental changes during the Vistulian Lateglacial at Żabinko, Poland. Quaestiones Geographicae 4 (special issue): 4364.
Bøtter-JensenL., AndersenC.E., DullerG.A.T. & MurrayA.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535541.
BridgeJ.S., 1985. Paleochannel patterns inferred from alluvial deposits: a critical evaluation. Journal of Sedimentary Petrology 55: 579589.
BroothaertsN., VerstraetenG., KasseC., BohnckeS., NotebaertB. & VandenbergheJ., 2014a. Reconstruction and semi-quantification of human impact in the Dijle catchment, central Belgium: a palynological and statistical approach. Quaternary Science Reviews 102: 96110.
BroothaertsN., VerstraetenG., KasseC., BohnckeS., NotebaertB. & VandenbergheJ., 2014b. From natural to human-dominated floodplain geo-ecology – a Holocene perspective for the Dijle catchment. Anthropocene 8: 4658.
BunnikF., 1999. Vegetationsgeschichte der lössbörden zwischen Rhein und Maas, von der Bronzezeit bis in die frühe Neuzeit. PhD Thesis, Universiteit Utrecht: 194 pp.
BusschersF.S., KasseC., Van BalenR.T., VandenbergheJ., CohenK.M., WeertsH.J.T., WallingaJ., JohnsC., CleveringaP. & BunnikF.P.M., 2007. Late Pleistocene evolution of the Rhine in the southern North-Sea Basin: imprints of climate change, sea-level oscillations and glacio-isostacy. Quaternary Science Reviews 26: 32163248.
CastelI., KosterE. & SlotboomR., 1989. Morphogenetic aspects and age of Late Holocene eolian drift sands in Northwest Europe. Zeitschrift für Geomorphologie 33: 126.
CohenK.M., 2003. Differential subsidence within a coastal prism: Late-Glacial – Holocene tectonics in the Rhine–Meuse delta, The Netherlands. PhD Thesis, Utrecht University (Utrecht), Netherlands Geographical Studies 316: 1172.
CohenK.M., StouthamerE. & BerendsenH.J.A., 2002. Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine–Maas delta, the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 389405.
CunninghamA.C. & WallingaJ., 2010. Selection of integration time-intervals for quartz OSL decay curves. Quaternary Geochronology 5: 657666.
CunninghamA.C. & WallingaJ., 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology 12: 98106.
CunninghamA.C., WallingaJ. & MinderhoudP.S.J., 2011. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38: 424431.
De MoorJ.J.W., KasseC., Van BalenR., VandenbergheJ. & WallingaJ., 2008. Human and climate impact on catchment development during the Holocene – Geul River, the Netherlands. Geomorphology 98: 316339.
DullerG.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161165.
DzieduszyńskaD.A., KittelP., Petera-ZganiaczJ., BrooksS.J., KorzeńK., KrąpiecM., PawłowskiD., PłazaD.K., PłóciennikM., Stachowicz-RybkaR. & TwardyJ., 2014. Environmental influence on forest development and decline in the Warta River valley (Central Poland) during the Late Weichselian. Quaternary International 324: 99114.
ErkensG., DambeckR., VollebergK.P., BoumanM.T.I.J., BosJ.A.A., CohenK.M., WallingaJ. & HoekW.Z., 2009. Fluvial terrace formation in the northern Upper Rhine Graben during the last 20 000 years as a result of allogenic controls and autogenic evolution. Geomorphology 103: 476495.
ErkensG., HoffmannT., GerlachR. & KlostermannJ., 2011. Complex fluvial response to Late Glacial and Holocene allogenic forcing in the Lower Rhine Embayment (Germany). Quaternary Science Reviews 30: 611627.
FaegriK. & IversenJ., 1989. Textbook of Pollen Analysis, 4th edition. Wiley & Sons (Chichester): 328 pp.
FrechenM. & Van den BergM., 2002. The coversands and timing of Late Quaternary earthquake events along the Peel Boundary Fault in the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 6170.
GalbraithR.F., RobertsR.G., LaslettG.M., YoshidaH. & OlleyJ.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339364.
GrimmE., 1992. TILIA and TILIA-graph: pollen spreadsheet and graphics programs. Programs and Abstracts, 8th International Palynological Congress, Aix-en-Provence: 56.
HijmaM.P., CohenK.M., HoffmannG., Van der SpekA. & StouthamerE., 2009. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine–Maas delta). Netherlands Journal of Geosciences / Geologie en Mijnbouw 88: 1353.
HoboN., MakaskeB., WallingaJ. & MiddelkoopH., 2014. Reconstruction of eroded and deposited sediment volumes of the embanked river Waal, the Netherlands, for the period AD 1631–present. Earth Surface Processes and Landforms 39: 13011318.
HoekW.Z., 1997a. Palaeogeography of Lateglacial vegetations. Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape, and climate in the Netherlands. PhD Thesis, Vrije Universiteit Amsterdam (Amsterdam): 147 pp.
HoekW.Z., 1997b. Atlas to Palaeogeography of Lateglacial vegetations. Maps of Lateglacial and Early Holocene landscape and vegetation in The Netherlands, with an extensive review of available palynological data. PhD Thesis, Vrije Universiteit Amsterdam (Amsterdam): 165 pp.
HoekW.Z., 2000. Abiotic landscape and vegetation patterns in the Netherlands during the Weichselian Late Glacial. Netherlands Journal of Geosciences / Geologie en Mijnbouw 79: 497509.
HoekW.Z., 2001. Vegetation response to the ~14.7 and ~11.5 ka cal. BP climate transitions: is vegetation lagging climate? Global and Planetary Change 30: 103115.
HolbrookJ. & SchummS.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation; a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305: 287306.
HoubenP., 2003. Spatio-temporally variable response of fluvial systems to Late Pleistocene climate change: a case study from central Germany. Quaternary Science Reviews 22: 21252140.
HuisinkM., 1997. Late Glacial sedimentological and morphological changes in a lowland river as a response to climatic change: the Maas, the Netherlands. Journal of Quaternary Science 12: 209223.
IsarinR. & BohnckeS., 1999. Mean July temperatures during the Younger Dryas in Northwestern and Central Europe as inferred from climate indicator plant species. Quaternary Research 51: 158173.
JanssensM.M., 2011. Holocene floodplain development of the river Rur: allogenic or autogenic forcing mechanisms? Master thesis, Vrije Universiteit Amsterdam (Amsterdam): 53 pp.
JanssensM.M., KasseC., BohnckeS.J.P., GreavesH., CohenK.M., WallingaJ. & HoekW.Z., 2012. Climate-driven fluvial development and valley abandonment at the last glacial–interglacial transition (Oude IJssel–Rhine, Germany). Netherlands Journal of Geosciences / Geologie en Mijnbouw 91: 3762.
KadlecJ., KocurekG., MohrigD., ShindeD.P., MurariM.K., VarmaV., StehlíkF., BenešV. & SinghviA.K., 2015. Response of fluvial, aeolian, and lacustrine systems to late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic. Geomorphology 232: 193208.
KaiserK., HilgersA., SchlaakN., JankowskiM., KühnP., BussemerS. & PrzegiętkaK., 2009. Palaeopedological marker horizons in northern central Europe: characteristics of Lateglacial Usselo and Finow soils. Boreas 38: 591609.
KalisA.J. & BunnikF.P.M., 1990. Holozäne Vegetationsgeschichte in der westlichen niederrheinischen Bucht. In: Schirmer W. (ed.): Rheingeschichte zwischen Mosel und Maas. J. Wegener (Dormagen): 266272.
KasseC., 1995a. Younger Dryas cooling and fluvial response (Maas River, the Netherlands) (extended abstract). Geologie en Mijnbouw 74: 251256.
KasseC., 1995b. Younger Dryas climatic changes and aeolian depositional environments. In: Troelstra S.R., Van Hinte J.E. & Ganssen G.M. (eds): The Younger Dryas. Koninklijke Nederlandse Akademie van Wetenschappen, Verhandelingen, Afd. Natuurkunde, Eerste Reeks, deel 44. North-Holland (Amsterdam): 2731.
KasseC., 1997. Cold-climate aeolian sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8: 295311.
KasseC., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26: 507532.
KasseK., VandenbergheJ. & BohnckeS., 1995. Climate change and fluvial dynamics of the Maas during the late Weichselian and early Holocene. In: Frenzel B. (ed.): European river activity and climatic change during the Lateglacial and early Holocene. European Science Foundation project ‘European Palaeoclimate and Man’, special issue 9, Paläoklimaforschung / Palaeoclimate Research 14: 123150.
KasseC., HoekW.Z., BohnckeS.J.P., KonertM., WeijersJ.W.H., CasseeM.L. & Van der ZeeR.M., 2005. Late Glacial fluvial response of the Niers–Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20: 377394.
KasseC., VandenbergheD., De CorteF. & Van den hauteP., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22: 695708.
KasseC., BohnckeS.J.P. VandenbergheJ. & GábrisG., 2010. Fluvial style changes during the last glacial–interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists’ Association 121: 180194.
KidenP., 1991. The Lateglacial and Holocene evolution of the Middle and Lower River Scheldt, Belgium. In: Starkel L., Gregory K.J. & Thornes J.B. (eds): Temperate palaeohydrology. John Wiley and Sons (Chichester): 283299.
KissT., HerneszP., SümeghyB., GyörgyövicsK. & SiposG., 2015. The evolution of the Great Hungarian Plain fluvial system – fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International 388: 142155.
KozarskiS., 1983. River channel changes in the middle reach of the Warta valley, Great Poland lowland. Quaternary Studies in Poland 4: 159169.
MaddyD., BridglandD. & WestawayR., 2001. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International 79: 2336.
MeylemansE., BogemansF., StormeaA., PerdaenY., VerdurmenI. & DeforceK., 2013. Lateglacial and Holocene fluvial dynamics in the Lower Scheldt basin (N-Belgium) and their impact on the presence, detection and preservation potential of the archaeological record. Quaternary International 308–309: 148161.
MichonL. & Van BalenR.T., 2005. Characterization and quantification of active faulting in the Roer valley rift system based on high precision digital elevation models. Quaternary Science Reviews 24: 457474.
MolJ., VandenbergheJ., KasseK. & StelH., 1993. Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. Journal of Quaternary Science 8: 1530.
MooreP.D., WebbJ.A. & CollinsonM.E., 1991. Pollen analysis, 2nd edition. Blackwell Scientific Publications (Oxford): 216 pp.
MurrayA.S. & WintleA.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.
MurrayA.S. & WintleA.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.
PaninA. & MatlakhovaE., 2015. Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. Catena 130: 4661.
PastreJ.-F., Limondin-LozouetN., LeroyerC., PonelP. & FontugneM., 2003. River system evolution and environmental changes during the Lateglacial in the Paris Basin (France). Quaternary Science Reviews 22: 21772188.
PonsL.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ont-wikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Mededelingen Stichting Bodemkartering, Bodemkundige Studies 3: 156 pp.
RenssenH., 2001. The climate in The Netherlands during the Younger Dryas and Preboreal: means and extremes obtained with an atmospheric general circulation model. Geologie en Mijnbouw / Netherlands Journal of Geosciences 80: 1930.
RenssenH. & IsarinR.F.B., 2001. The two major warming phases of the last deglaciation at ~14.7 and ~11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Global and Planetary Change 30: 117153.
RoseJ., 1995. Lateglacial and early Holocene river activity in lowland Britain. In: Frenzel B. (ed.): European river activity and climatic change during the Lateglacial and early Holocene. European Science Foundation project ‘European Palaeoclimate and Man’, special issue 9, Paläoklimaforschung / Palaeoclimate Research 14: 5174.
SchalichJ., 1968. Die Spätpleistozäne und Holozäne Tal- und Bodenentwicklung an der mittleren Rur. Fortschritte Geologie Rheinland und Westfalen 16: 339370.
SchirmerW., 1995. Valley bottoms in the late Quaternary. Zeitschrift für Geomorphologie, Neue Folge, Supplement-Band 100: 2751.
SchokkerJ., CleveringaP., MurrayA.S., WallingaJ. & WesterhoffW.E., 2005. An OSL dated Middle and Late Quaternary sedimentary record in the Roer Valley Graben (southeastern Netherlands). Quaternary Science Reviews 24: 22432264.
SchwanJ., 1987. Sedimentologic characteristics of a fluvial to aeolian succession in Weichselian Talsand in the Emsland (F.R.G.). Sedimentary Geology 52: 273298.
SevinkJ., KosterE.A., Van GeelB. & WallingaJ., 2013. Drift sands, lakes, and soils: the multiphase Holocene history of the Laarder Wasmeren area near Hilversum, the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 92: 243266.
StarkelL., 2002. Younger Dryas – Preboreal transition documented in the fluvial environment of Polish rivers. Global and Planetary Change 35: 157167.
StarkelL., GębicaP. & SupersonJ., 2007. Last Glacial – Interglacial cycle in the evolution of river valleys in southern and central Poland. Quaternary Science Reviews 26: 29242936.
StarkelL., MichczyńskaD.J., GębicaP., KissT., PaninA. & PerşoiuI., 2015 Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8 ka cal BP). Quaternary International 388: 97118.
TebbensL.A., VeldkampA., WesterhoffW. & KroonenbergS.B., 1999. Fluvial incision and channel downcutting as a response to Lateglacial and Early Holocene climate change: the lower reach of the River Meuse, The Netherlands. Journal of Quaternary Science 14: 5975.
TurnerF., TolksdorfJ.F., ViehbergF., SchwalbA., KaiserK., BittmannF., von BramannU., PottR., StaescheU., BreestK. & VeilS., 2013. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes. Quaternary Science Reviews 60: 91109.
Van BalenR.T., HoutgastR.F., Van der WaterenF.M., VandenbergheJ. & BogaartP.W., 2000. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System. Global and Planetary Change 27: 113130.
Van BalenR.T., HoutgastR.F. & CloetinghS.A.P.L., 2005. Neotectonics of The Netherlands: a review. Quaternary Science Reviews 24: 439454.
Van BostelenJ.A. & VreugdenhilM., 2009. De evolutie van de Roer in het Laat Glaciaal en Holoceen. Bachelorthesis Vrije Universiteit, Amsterdam: 102 pp.
Van den BergJ.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12: 259279.
Van den BergM.W., 1989. Toelichting op kaartblad 59 Genk, 60 Sittard, 61 Maastricht, 62 Heerlen. Geomorfologische kaart van Nederland 1:50.000. Staring Centrum Wageningen, Rijks Geologische Dienst (Haarlem): 33 pp.
Van den BergM.W. & SchwanJ.C.G., 1996. Millennial cyclicity in Weichselian Late Pleniglacial to Early Holocene fluvial deposits of the river Maas in the southern Netherlands. In: Van den Berg M.W.: Fluvial sequences of the Maas: a 10-Ma record of neotectonics and climatic change at various time scales. PhD Thesis, Wageningen University (Wageningen): 99121.
Van den BergM., VannesteK., DostB., LokhorstA., Van EijkM. & VerbeeckK., 2002. Paleoseismic investigations along the Peel Boundary Fault: geological setting, site selection and trenching results. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 3960.
VandenbergheD., KasseC., HossainS.M., De CorteF., Van den hauteP., FuchsM. & MurrayA.S., 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 7386.
VandenbergheD.A.G., DereseC., KasseC. & Van den hauteP., 2013. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68: 96113.
VandenbergheJ., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.
VandenbergheJ., 2008. The fluvial cycle at cold–warm–cold transitions in lowland regions: a refinement of theory. Geomorphology 98: 275284.
VandenbergheJ. & PissartA., 1993. Permafrost changes in Europe during the Last Glacial. Permafrost and Periglacial Processes 4: 121135.
VandenbergheJ. & Van HuisstedenJ., 1988. Fluvio-aeolian interaction in a region of continuous permafrost. 5th International Conference on Permafrost, Trondheim, Norway. Proceedings: 876–881.
VandenbergheJ., KasseC., BohnckeS.J.P. & KozarskiS., 1994. Climate-related river activity at the Weichselian–Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova 6: 476485.
Van den BroekJ.M.M. & MaarleveldG.C., 1963. The Late Pleistocene terrace deposits of the Meuse. Mededelingen Geologische Stichting, Nieuwe Serie 16: 1324.
Van den BroekJ.M.M. & Van der MarelH.W., 1964. De alluviale gronden van de Maas, de Roer en de Geul in Limburg. Mededelingen van de Stichting voor Bodemkartering, Bodemkundige Studies 7 (Wageningen): 83 pp.
Van HuisstedenJ. & KasseC., 2001. Detection of rapid climate change in the Last Glacial fluvial successions in The Netherlands. Global and Planetary Change 28: 319339.
Van ZuidamR.A., 1980. Het Meinweggebied en Roergebied. Een tektonisch en eolisch beïnvloed terrassenlandschap nabij Roermond (Midden Limburg). Koninklijk Nederlands Aardrijkskundig Genootschap, Geografisch Tijdschrift, Nieuwe reeks 14: 120133.
VreugdenhilM., 2011. Fluvial and vegetational development during the Late Pleniglacial, Lateglacial and Holocene in the Rur valley. Master thesis, Vrije Universiteit Amsterdam (Amsterdam): 53 pp.
WardP.J., RenssenH., AertsJ.C.J.H., Van BalenR.T. & VandenbergheJ., 2008. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences 12: 159175.
WooM.-K. & WinterT.C., 1993. The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America. Journal of Hydrology 141: 531.
ZielińskiP., SokołowskiR. J., FedorowiczS. & ZaleskiI., 2014. Periglacial structures within fluvioaeolian successions of the end of the Last Glaciation – examples from SE Poland and NW Ukraine. Boreas 43: 712721.
ZuidhoffF.S. & HuizerJ. (eds.) 2015. De noordelijke Maasvallei door de eeuwen heen. Vijftienduizend jaar landschapsdynamiek tussen Roermond en Mook. ADC Monografie 19 (Amersfoort): 490 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 9
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 379 *
Loading metrics...

* Views captured on Cambridge Core between 19th December 2016 - 24th October 2017. This data will be updated every 24 hours.