Skip to main content
×
Home
    • Aa
    • Aa

The future of subsidence modelling: compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands

  • Karin van Thienen-Visser (a1) and Peter A. Fokker (a1)
Abstract
Abstract

The Groningen gas field has shown considerable compaction and subsidence since starting production in the early 1960s. The behaviour is understood from the geomechanical response of the reservoir pressure depletion. By integrating surface movement measurements and modelling, the model parameters can be constrained and understanding of the subsurface behaviour can be improved. Such a procedure has been employed to formulate new compaction and subsidence forecasts. The results are put into the context of an extensive review of the work performed in this field, both in Groningen and beyond. The review is used to formulate a way forward designed to integrate all knowledge in a stochastic manner.

Copyright
Corresponding author
*Corresponding author. Email: karin.vanthienen@tno.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Atefi Monfared & L. Rothenburg , 2011. Ground surface displacements and tilt monitoring for reconstruction of reservoir deformations. International Journal of Rock Mechanics and Mining Sciences 48: 11131122.

N. Brantut , M.J. Heap , P.G. Meredith & P. Baud , 2013. Time-dependent cracking and brittle creep in crustal rocks: a review. Journal of Structural Geology 52 (1): 1743.

J. Du & J.E. Olson , 2001. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts. Journal of Petroleum Science Engineering 30: 181197.

A. Emerick & A.C. Reynolds , 2013. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Computing Geoscience 17: 325350.

N. Fares & V.C. Li , 1998. General image method in a plane-layered elastostatic medium. Transactions, Journal of Applied Mechanics 55 (110): 781785.

P.A. Fokker & B. Orlic , 2006. Semi-analytic modeling of subsidence. Mathematical Geology 38: 565589.

P.A Fokker & K. Van Thienen-Visser , 2016. Inversion of double-difference measurements from optical leveling for the Groningen gas field. International Journal of Applied Earth Observation and Geoinformation 49: 19.

P.A. Fokker , B.B.T. Wassing , F.J. Van Leijen , R.F. Hanssen & D.A. Nieuwland , 2016. Application of an ensemble smoother with multiple data assimilation to the Bergermeer gas field, using PS-InSAR. Geomechanics for Energy and the Environment 5: 1628.

M.H.H. Hettema , P.M.T.M. Schutjens , B.J.M. Verboom & H.J. Gussinklo , 2000. Production-induced compaction of a sandstone reservoir: the strong influence of stress path. SPE Reservoir Evaluation and Engineering 3 (4): 342347.

M.H.H. Hettema , E. Papamichos & P.M.T.M. Schutjens , 2002. Subsidence delay: field observations and analysis. Oil and Gas Science and Technology – Revue d'IFP Energies Nouvelles 57 (5): 443458.

G. Marketos , R. Govers & C.J. Spiers , 2015. Ground motions induced by a producing hydrocarbon reservoir that is overlain by a viscoelastic rocksalt layer: a numerical model. Geophysical Journal International 203 (1): 228242.

R.D. Mindlin & D.H. Cheng , 1950. Thermo-elastic stress in the semi-infinite solid. Journal of Applied Physics 21: 931933.

N. Morita , D.L. Whitfill , O. Nygaard & A. Bale , 1989. A quick method to determine subsidence, reservoir compaction, and in-situ stress induced by reservoir depletion. Journal of Petroleum Technology 41 (1): 7179.

A.G. Muntendam-Bos & P.A. Fokker , 2009. Unraveling reservoir compaction parameters through the inversion of surface subsidence observations. Computational Geosciences 13 (1): 4355.

M. Nepveu , I.C. Kroon & P.A. Fokker , 2010. Hoisting a red flag: an early warning system for exceeding subsidence limits. Mathematical Geosciences 42 (2): 187198.

A.R. Niemeijer , C.J. Spiers & B. Bos , 2002. Compaction creep of quartz sand at 400–600°C: experimental evidence for dissolution-controlled pressure solution. Earth and Planetary Science Letters 195: 261275.

B. Orlic & B.B.T. Wassing , 2013. A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks. Rock Mechanics and Rock Engineering 46 (3): 421435.

J.P. Pruiksma , J.N. Breunese , K. Van Thienen-Visser & J.A. De Waal , 2015. Isotach formulation of the Rate type compaction model for sandstone. International Journal of Rock Mechanics and Mining Sciences 78: 127132.

A. Rucci , D.W. Vasco & F. Novali , 2013. Monitoring the geologic storage of carbon dioxide using multicomponent SAR interferometry. Geophysical Journal International 193 (1):197208.

P.M.T.M. Schutjens , 1991. Experimental compaction of quartz sand at low effective stress and temperature conditions. Journal of the Geological Society 148 (3): 527539.

P.M.T.M. Schutjens , T.H. Hanssen , M.H.H. Hettema , J. Merour , F. de Bree , J.W.A. Coremans & G.J. Helliesen , 2004. Compaction-induced porosity/permeability reduction in sandstone reservoirs: data and model for elasticity-dominated deformation. SPE Reservoir Evaluation and Engineering 7 (3): 202216.

P. Segall , 1992. Induced stresses due to fluid extraction from axisymmetric reservoirs. Pure and Applied Geophysics 139 (3/4): 535560.

R. Tavakoli , H. Yoon , M. Delshad , A.H. ElSheikh , M.F. Wheeler & B.W. Arnold , 2013. Comparison of ensemble filtering algorithms and null-space Monte Carlo for parameter estimation and uncertainty quantification using CO2 sequestration data. Water Resource Research 49: 81088127.

P. Teatini , N. Castelletto , M. Ferronato , G. Gambolati , C. Janna , E. Cairo , D. Marzorati , D. Colombo , A. Ferretti , A. Bagliani & F. Bottazzi , 2011. Geomechanical response to seasonal gas storage in depleted reservoirs: a case study in the Po River basin, Italy. Journal of Geophysical Research: Earth Surface 116 (F2): F02002. doi: 10.1029/2010JF001793.

P. Tempone , E. Fjær & M. Landrø , 2010. Improved solution of displacements due to a compacting reservoir over a rigid basement. Applied Mathematical Modelling 34: 33523362.

K. Van Thienen-Visser & J.N. Breunese , 2015. Induced seismicity of the Groningen gas field: history and recent developments. The Leading Edge 34 (6): 664671.

P. Vanicek , R.O. Castle & E.I. Balazs , 1980. Geodetic leveling and its applications. Reviews of Geophysics 18 (2): 505524.

D.W. Vasco , A. Rucci , A. Ferretti , F. Novali , R.C. Bissell , P.S. Ringrose , A.S. Mathieson & I. W. Wright , 2010. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophysics Research Letters 37: L03303. doi: 10.1029/2009GL041544.

R. Wang , F. Lorenzo-Martin & F. Roth , 2006. PSGRN/PSCMP – a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers and Geosciences 32: 527541.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between 12th July 2017 - 25th July 2017. This data will be updated every 24 hours.